
A propositions-as-types approach to the generalized crossover effect

Daiki Matsuoka1 Daisuke Bekki2 Hitomi Yanaka1
1The University of Tokyo 2Ochanomizu University

Overview The weak crossover (WCO) effect is a constraint on anaphora that prohibits a
quantifier from binding a pronoun that it does not c-command, as exemplified by (1).
(1) a. A girl1 praised her1 mother.

b. *Her1 mother praised a girl1.
Although WCO has traditionally been regarded as a restriction on syntactic movement, it has
recently been observed that presupposition projection follows a similar constraint [1]. This
general version ofWCO, called generalized crossover (GCO), requires a uniform explanation of
how quantifier scope and presupposition feed pronominal anaphora. To address this challenge,
we adopt Dependent Type Semantics (DTS) [2], a semantic framework that uses a type as the
semantic representation (SR) for a sentence. Under this view of propositions-as-types, semantic
interactions among quantifier scope, anaphora, and presupposition can all be analyzed in terms
of scopal relations between types, based on which GCO can be systematically derived.
GCO effect Anaphoric expressions have access to presuppositions that project out of pre-
supposition holes (e.g., negation). This is illustrated by (2a), where the complement of know
projects out of negation and is accessible from the pronoun it. However, this type of dependency
is disallowed when the pronoun precedes the trigger, as in (2b).
(2) a. Alex did not know that Kim wrote a paper1, and reviewed it1.

b. *Its1 reviewer did not know that Kim wrote a paper1.
[1] suggested that the contrast in (2) should be considered parallel to the one attributed toWCO,
proposing GCO, a generalization to the following effect.
(3) Quantifier scope (resp. presupposition) can feed a semantic dependency unless the seman-

tically dependent expression “precedes” the quantifier (resp. the presupposition trigger).
As [1] pointed out, the standard movement-based analyses of WCO (e.g., [3]) would have diffi-
culty providing a unified account for GCO, since they would need to posit separate mechanisms
of binding for quantifier scope and presupposition. Hence, what we desire is a structural rela-
tion that governs the two phenomena and realizes GCO as a single constraint. We argue that this
desideratum can be achieved by the propositions-as-types approach, which we will see next.
Framework DTS is based on the principle of propositions-as-types, which states that a
proposition (and its proofs) can be identified with a type (and its terms) [4]. For instance,
existential quantification ∃x ∈ A.B is represented by the dependent product type (x : A)×B,
which consists of pairs ⟨a, b⟩ with a : A and b : B[x := a]. When x does not occur free in B,
the type corresponds to A ∧ B. For instance, Kim wrote a paper is translated into the SR (4).
Note that paper(x) takes scope as well as the existential quantification. As we will see, this
parallelism between propositions and quantifier scopes is crucial in our analysis of GCO.
(4) (x : e)× ((u : paper(x))× write(k, x)) (Let this SR be Ak)
DTS represents pronouns with the underspecified type (x @ A) × B (as illustrated in (5)),

where x is a placeholder to be filled with a concrete term of type A. It handles presupposition
triggers in the same way (6), in line with the presupposition-as-anaphora paradigm [5].
(5) Kim wrote a paper and Alex reviewed it.⇝ SR: (v : Ak)× ((y@ e)× review(a, y))
(6) Alex knew that Kim wrote a paper.⇝ SR: (v@ Ak)× know(a, Ak)
After these “intermediate” SRs are composed, underspecified types are eliminated in the

process of type checking, thereby validating that an SR A is well-formed as a type under the
current context Γ (formally, Γ ⊢ A : type). Figure 1 shows how this process works with (5)
(to save space, we use the square-bracket notation [· · ·] for types of the form (· · ·)× · · ·). The
type-checking algorithm inspects each part of an SR in a top-down manner (i.e., from higher
scope to lower), and once it finds (x @ A) × · · · , it tries to construct a term of type A based

on the contextual information, as depicted in the bottom-center box. Here, a possible result is
π1v : e, where π1 is the function taking the first element a of a pair ⟨a, b⟩. Thus, the term π1v
refers to the entity x introduced in the first conjunct Ak, as shown by the annotated arrow in the
resultant SR. Hence, we can correctly predict that it can covary with a paper in (5).
Proposal Although DTS provides a promising approach to pronominal binding, it cannot be
applied as is to GCO. This leads us to propose the following two assumptions.

SR for (1a):
x : eu : girl(x)[

y@ e
praise(x, mother(y))

]

SR for (1b):
y@ e x : e[
u : girl(x)
praise(mother(y), x)

]

First, for a syntax-semantics interface providing proper treat-
ment of inverse scope, we adopt the continuation-based grammar
proposed by [6]. We stipulate that the LIFT operation is applied at
the level of the lexicon, with pronouns (and presupposition trig-
gers) being restricted to two-level towers. Informally, inverse
scope is enabled by towers with more than two levels (Figure 2
(left)). Hence, the restriction here prevents a pronoun from be-
ing subject to inverse scope (Figure 2 (right)). In this setup, (1a)
and (1b) are translated as shown on the right. Because of the top-
down nature of type checking, x is available for y@ e in the SR
for (1a) but not in the one for (1b). This scopal asymmetry leads
to the correct prediction of WCO (although the same SRs are
proposed in [2], we will argue in the full paper that the syntactic
formalism adopted there can produce incorrect SRs).

Type checking of ¬(6):

Γ ⊢ ¬
[
v@ Ak

know(a, Ak)

]
: typey type checking

Γ, v : Ak ⊢ ¬know(a, Ak) : type

Second, to formalize presupposition projection in terms of
type checking, we define the operation of accommodation as in
(7), which extends the context upon presupposition failure. To
illustrate, consider the negated version of (6). If the initial con-
text does not entail Ak, type checking proceeds as described on
the right. The result is that the accommodated presuppositionAk

is not in the scope of negation, as expected.
(7) Accommodation: if the type-checking algorithm cannot find any term M such that Γ ⊢

M : A in deriving Γ ⊢ (x @ A) × B : type, then it can replace the result of this type
checking with that of Γ, x : A ⊢ B : type.

SR for (2a):w : ¬
[
v @Ak

know(a, Ak)

]
[
y@ e
review(a, y)

]

SR for (2b):[
y@ e

¬
[
v @Ak

know(rev(y), Ak)

]]

Analysis We show the SRs for (2a) and (2b) on the right, and the
type-checking process of the first one in Figure 3. Suppose that the ini-
tial context Γ does not entail Ak (if it does, binding should be possible
in (2b), too). When the upper part w : ¬[· · ·] is checked, presupposi-
tion failure occurs and Ak is accommodated. Then, the lower part is
checked under the context including v : Ak (see the bottom-right box),
so y can be replaced with π1v, as in Figure 1. In the resultant SR, the
projected presupposition feeds anaphora, as desired. As to the SR for
(2b), y @ e must be eliminated before Ak is accommodated, meaning
that v cannot be used to eliminate y. This explains the unavailability
of binding in (2b).
Conclusion With the DTS framework and the continuation-based syntax-semantics inter-
face, the SRs for the GCO cases have the structurally parallel configurations shown below,
where > indicates the scopal relation between types. As a result, the GCO effect is uniformly
predicted by the scope sensitivity of the anaphora resolution and the (proposed) accommodation
operation performed during type checking.

(dependent exp.) · · · quantifier
⇝ SR: (y@B) > (x : A)

(dependent exp.) · · · [operator · · · (trigger) · · ·]
⇝ SR: (y@B) > Op(· · · (x@A) · · ·)

References [1] P. D. Elliott and Y. Sudo. Generalised crossover. In Semantics and Linguis-
tic Theory, volume 30, pages 396–408, 2021. [2] D. Bekki. A proof-theoretic analysis of
weak crossover. In New Frontiers in Artificial Intelligence: JSAI-isAI 2021 Workshops, JU-
RISIN, LENLS18, SCIDOCA, Kansei-AI, AI-BIZ, Yokohama, Japan, November 13–15, 2021,
Revised Selected Papers, pages 228–241. Springer Nature Switzerland, 2023. [3] T. Reinhart.
Anaphora and Semantic Interpretation. Routledge, 1983. [4] P. Dybjer and E. Palmgren. In-
tuitionistic Type Theory. In The Stanford Encyclopedia of Philosophy. Metaphysics Research
Lab, Stanford University, spring 2023 edition, 2023. [5] R. van der Sandt. Presupposition
Projection as Anaphora Resolution. Journal of Semantics, 9(4):333–377, 1992. [6] C. Barker
and C. Shan. Continuations and Natural Language, volume 53 of Oxford studies in theoretical
linguistics. Oxford University Press, 2014.

Γ ⊢

v :

x : e[
u : paper(x)
write(k, x)

][
y@ e
review(a, y)

]
 : type Γ ⊢

v :

 x : e[
u : paper(x)
write(k, x)

]
review

(
a, π1v

)
 : type

type checking

y@ e y := π1v

proof search

Γ, v :

x : e[
u : paper(x)
write(k, x)

] ⊢ ? : e

Figure 1: Type checking of the SR for (5). Note that
[
x : A
B

]
stands for (x : A) × B (the same

applies to @).

S | S
S | S
DP

every student
[]

(y : e) → (· · ·)
y

S | S
S | S
DP\S

read a book
(x : e)× (· · ·)

[]

λz.read(z, x)

=

S | S
S | S
S

every student read a book
(x : e)× (· · ·)
(y : e) → (· · ·)

read(y, x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S | S
DP

her mother

(y@ e)× []

mother(y)

S | S
S | S
DP\S

praised a girl
(x : e)× (· · ·)

[]

λz.praise(z, x)

· · · ×

Figure 2: Left: derivation of every student read a book with the inverse scope reading (see [6]
for the definition of the tower notation). Right: attempt to derive (1b) forcing the indefinite to
take higher scope than the pronoun, which fails due to the mismatch of the tower levels.

Γ ⊢

w : ¬
[
v @Ak

know(a, Ak)

]
[
y@ e
review(a, y)

]
 : type Γ, v : Ak ⊢

[
w : ¬know(a, Ak)
review(a, π1v)

]
: type

type checking

v @Ak

(accommodation)

Γ ⊢ ? : Ak

y@ e

y := π1v

Γ, v : Ak, w : ¬know(a, Ak) ⊢ ? : e

Figure 3: Type checking of the SR for (2a).

