

Split and compose

Deriving long-distance dependencies in a continuation-based grammar

Daiki Matsuoka^{1,2} and Hitomi Yanaka^{1,2,3}

¹The University of Tokyo ²RIKEN ³Tohoku University

Nov. 29, 2025 (@LENLS21)

Goal of this talk: present a refined version of the **continuation-based theory** of scope and binding (Barker & Shan, 2014).

- The continuation-based grammar provides a promising approach to **binding without c-command**.
- But it cannot properly handle **long-distance dependencies** (Leong & Erlewine, 2019).
- We propose **a new rule SPLIT**, which allows us to address the problem together with **function composition** (Steedman, 2000).

Outline

1. **Background:** Continuation-based grammar
2. **Problem:** Long-distance dependencies
3. **Proposal:** Split and compose
4. **Account**

Background: Continuation-based grammar

Binding and c-command

Traditional assumption: Binding requires **c-command** from an A-position (Reinhart, 1983).

(1) a. Every girl_i praised her_i mother. b. ?*Her_i mother praised every girl_i.

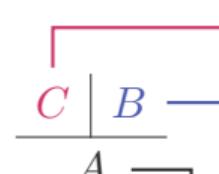
But it has been known that there are some counterexamples (Barker, 2012).

(2) a. [Every girl_i's teacher] praised her_i mother. (binding from a possessor)
b. We [sell no wine_i] before its_i time. (binding out of a VP)

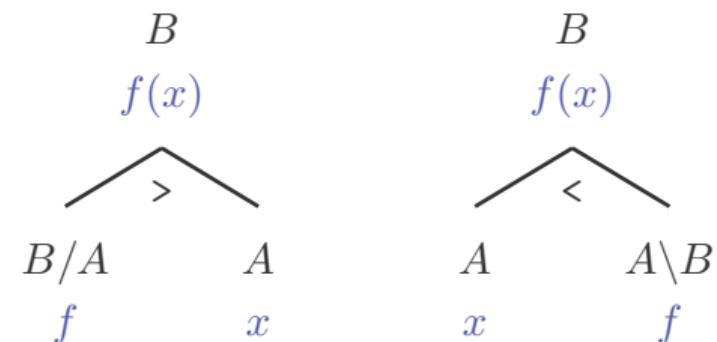
As a result, some recent theories have incorporated a certain kind of **linear order** into the account of binding (Barker & Shan, 2014; Bruening, 2014; Chierchia, 2020).

Continuations-based grammar

Here, we adopt the **continuation-based grammar** proposed in the seminal work by Barker and Shan (henceforth **B&S**).


- It is an extension of the standard categorial grammar with a mechanism to handle **scope-taking**.
- For the sake of time, I don't explain the formal details on continuations.

Continuation-based grammar: Introducing the towers


Idea: **Scope-level information is computed separately** from the predicate-argument structure (written separated by a vertical line).

$$(3) \text{ everyone : } \frac{S \mid S}{DP} \rightsquigarrow \frac{\forall x. []}{x}$$

In general, ...

- Semantics: $\frac{\alpha[]}{a}$ become C when it takes scope
- Syntactic category: $\frac{C \mid B}{A}$ take scope over B
behaves as A locally

Rules: Function application

Rules: LIFT and LOWER

We have rules to go back and forth between scope-takers and non-scope-takers.

- LIFT (\uparrow) turns A into a vacuous scope-taker.
- LOWER (\downarrow) collapses a tower.

$$\frac{B \mid B}{A}$$

$$\frac{[]}{x}$$

$$A$$

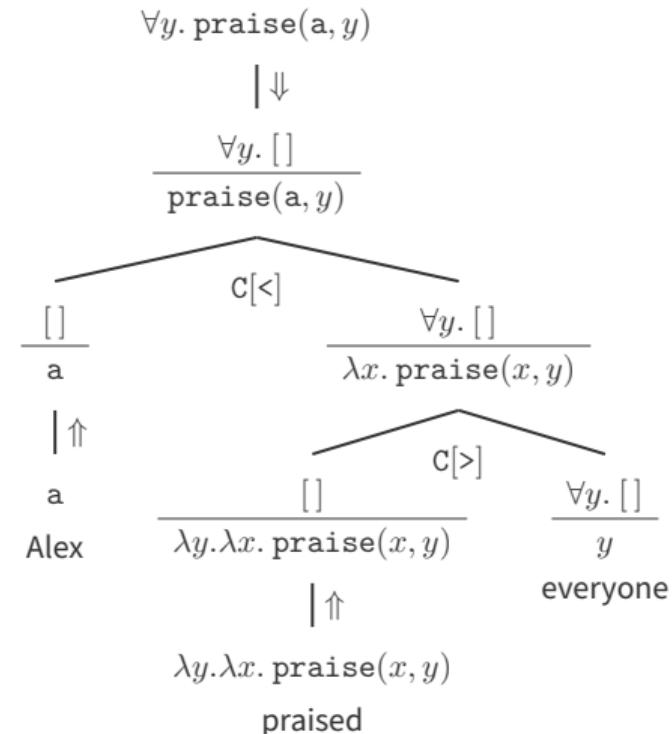
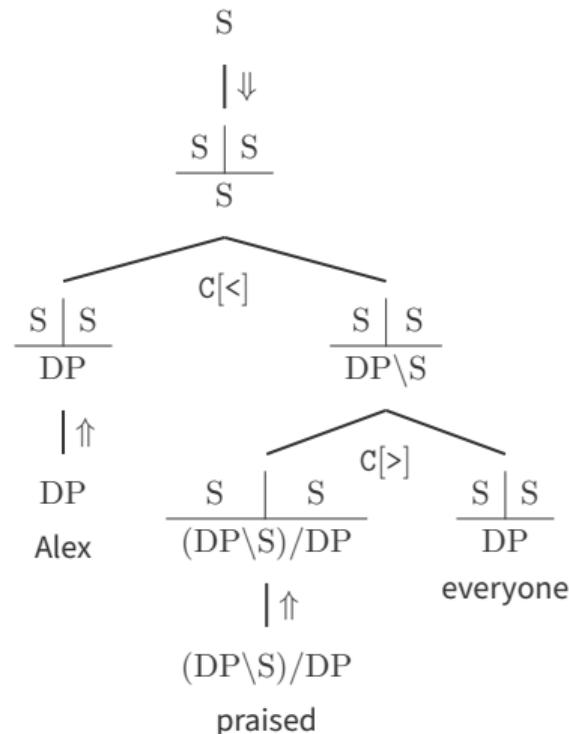
 x

 \uparrow

$$\frac{B}{\alpha[x]}$$

$$\frac{B \mid A}{A}$$

$$\frac{\alpha[]}{x}$$



Rules: Continuized function application

To combine two towers, we use the “continuized” version of function application.

$$\begin{array}{ccc} \frac{C \mid E}{B} & & \frac{C \mid E}{B} \\ \frac{\alpha[\beta[]]}{f(x)} & & \frac{\beta[\alpha[]]}{f(x)} \\ \begin{array}{c} \text{c}[>] \\ \diagup \quad \diagdown \\ \frac{C \mid D}{B/A} \quad \frac{D \mid E}{A} \end{array} & & \begin{array}{c} \text{c}[<] \\ \diagup \quad \diagdown \\ \frac{C \mid D}{A} \quad \frac{D \mid E}{A \setminus B} \end{array} \\ \frac{\alpha[]}{f} & \frac{\beta[]}{x} & \frac{\beta[]}{x} \quad \frac{\alpha[]}{f} \end{array}$$

- 1st level: function application
- 2nd level: **left-to-right** scope composition

Introducing continuations: Example

Binding via scope composition

An **unbound pronouns** is marked as $DP \triangleright A$, semantically denoting a **function from entities** (Jacobson, 1999).

(4) *She sneezed* : $DP \triangleright S \rightsquigarrow \lambda x. \text{sneeze}(x)$

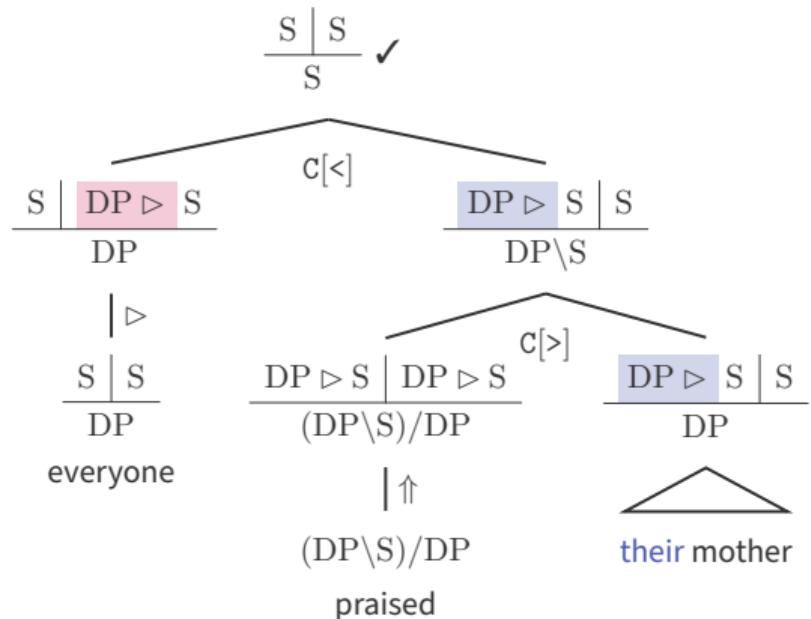
The analysis of binding is decomposed into two parts.

[Binder]

A unary rule \triangleright turns scope-takers into binders.

[Bindee]

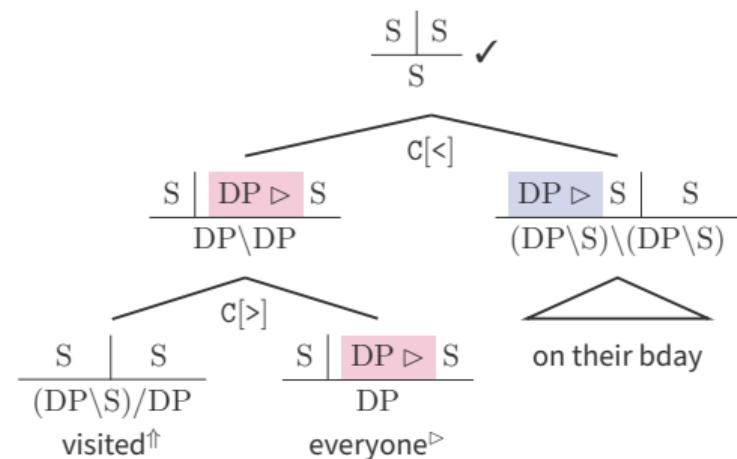
Pronouns lexically encode $DP \triangleright .$


$$(5) \text{ everyone}^\triangleright : \frac{S \mid DP \triangleright S}{DP} \rightsquigarrow \frac{\forall x. [](x)}{x}$$

$$(6) \text{ she} : \frac{DP \triangleright S \mid S}{DP} \rightsquigarrow \frac{\lambda x. []}{x}$$

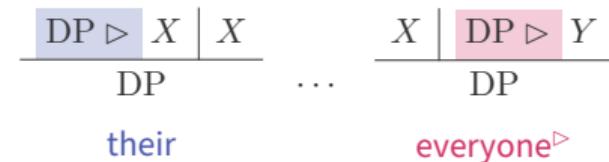
Binding via scope composition

Binding is established via scope composition.


(7) **Everyone_i** praised **their_i** mother.

Binding via scope composition: Example (contd.)

Notably, binding is predicted to follow linear order, not c-command.


(8) Alex [visited **everyone_i**] on **their_i** birthday.

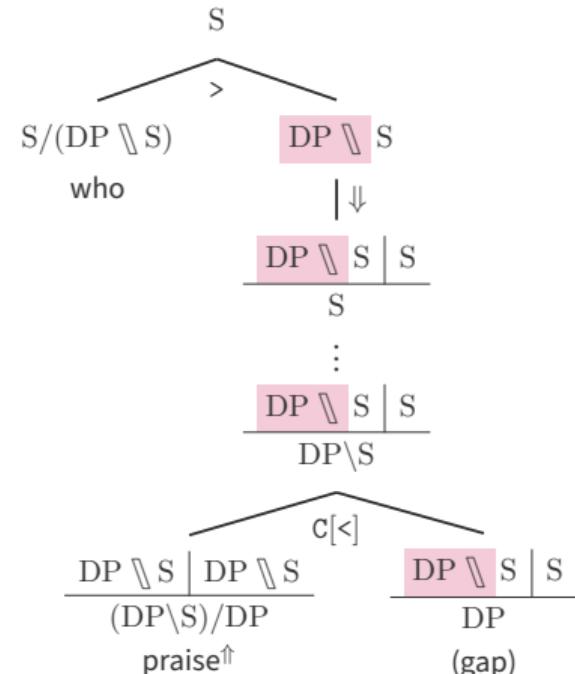
Binding via scope composition: Crossover

Hence, **the crossover effect** (Postal, 1971) is predicted as a result of the **left-to-right** nature of scope composition.

(9) $?^*\text{Their}_i$ mother praised everyone_i .

For *wh*-dependencies, they assume a gap at the object position.

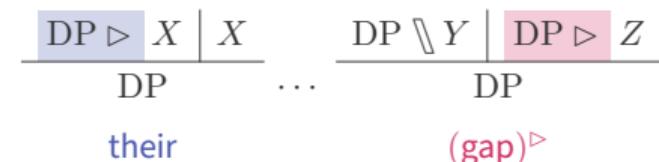
(10) $?^*\text{Whom}_i$ did their_i mother praise (gap)?


Wh-dependencies: Gap

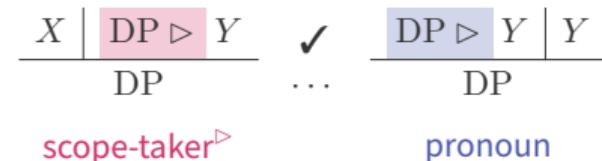
More concretely, gaps are formalized as scope-takers.

Let $A \setminus B$ be a category for “ B missing A inside”.

$$(11) \text{ (gap)} : \frac{\text{DP} \setminus \text{S} \mid \text{S}}{\text{DP}} \rightsquigarrow \frac{\lambda x. []}{x}$$


A *wh*-phrase expects $\text{DP} \setminus \text{S}$ on its right (i.e., a sentence with a gap inside),

Wh-dependencies (contd.)


Then, the *wh*-crossover can also be explained with the left-to-right scope composition.

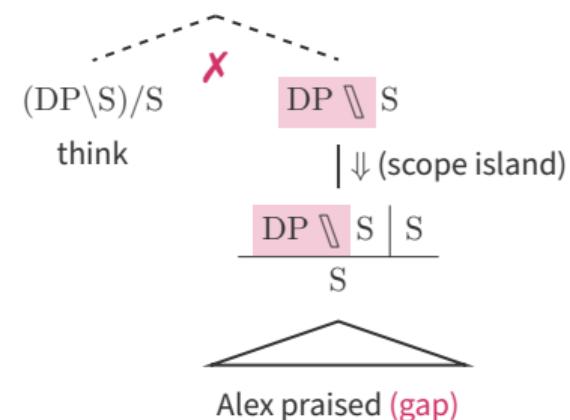
(10) Whom_i did their_i mother praise (gap)?

Interim summary

- Scope composition follows linear order.
- Binding is derived via scope.

Problem: Long-distance dependencies

Scope islands and long-distance dependencies (LDDs)

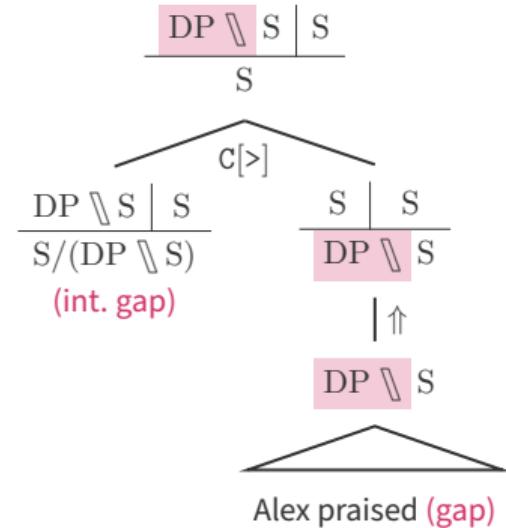

Finite clauses constitute **scope islands**: Scope-taking cannot go out of them.

(12) Someone thinks [Alex praised everyone]. (${}^*\forall > \exists$)

Thus, we need to LOWER the tower at every finite-clause boundary (Charlow, 2014).

But then, we cannot derive LDDs!

(13) Whom_i does Kim think [Alex praised ___]?



Intermediate gap (?)

A possible remedy: introduce an **intermediate gap** at the clausal edge (Leong & Erlewine, 2019).

Like successive cyclic movement:

(13) Whom_i does Kim think [Alex praised]?

Crossover effect in LDDs

However, we encounter another problem regarding **the crossover effect**.

(14) *?*Whom_i* does Kim think [*their_i* mother praised]?}

The intermediate gap can wrongly license binding in (14)!

(14) *Whom_i* does Kim think [*their_i* mother praised]?

$\frac{\text{DP} \setminus \text{S} \mid \text{DP} \triangleright \text{S}}{\text{S}/(\text{DP} \setminus \text{S})}$...	$\frac{\text{DP} \triangleright \text{S} \mid \text{S}}{\text{DP}}$...	$\frac{\text{S} \mid \text{S}}{\text{DP}}$
(int. gap) \triangleright		their		(gap)

What went wrong?

Leong and Erlewine (2019) pointed out that the issue stemmed from the treatment of *wh*-dependencies.

- B&S posited ***wh*-gaps as scope-takers**.
 - To account for binding from *wh*-phrases.
- But scope-taking is confined to **scope islands**.
 - We probably need a different mechanism for *wh*-dependencies.

Q. How should we make the continuation-based grammar compatible with LDDs?

Proposal: Split and compose

To address the issue ...

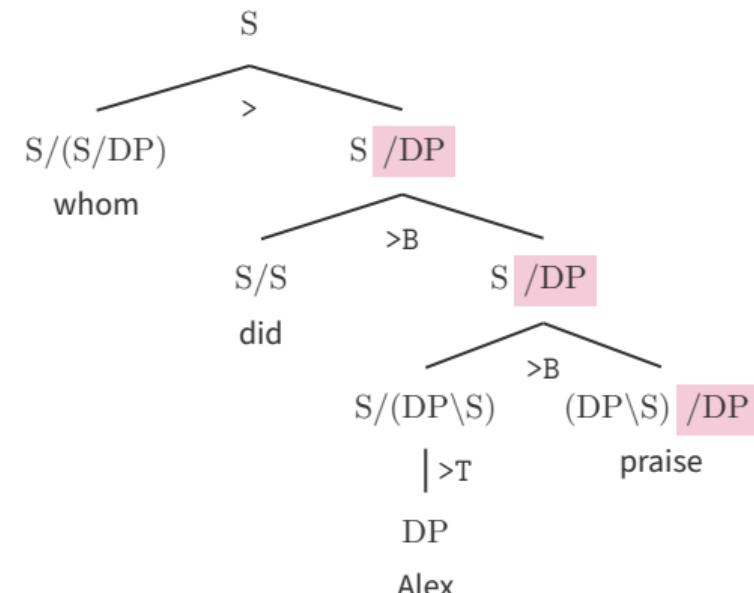
- We adopt a **gap-free** approach to LDDs (Steedman, 2000), which employs **function composition**.
- We propose **a new rule SPLIT**, so that we can integrate function composition into the continuation-based grammar.

Function composition

The function composition rules link two functions together.

$$\begin{array}{ccc} C/A & & A\backslash C \\ \lambda x. f(g(x)) & & \lambda x. f(g(x)) \\ \nearrow >B & & \nearrow <B \\ C/B & & A\backslash B \\ f & & g \\ & & \end{array} \quad \begin{array}{ccc} & & \\ B/A & & B\backslash C \\ g & & f \\ & & \end{array}$$

Function composition: *Wh*-dependencies

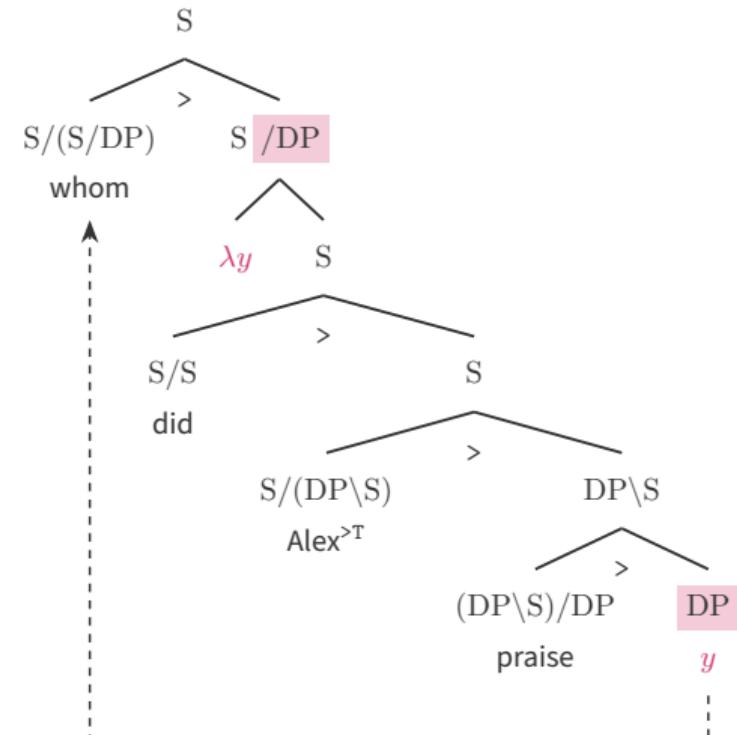

Let us derive the following.

(15) Whom did Alex praise?

First, we apply type-raising to *Alex*.

Then, we can combine *did*, *Alex*, and *praise* via function composition.

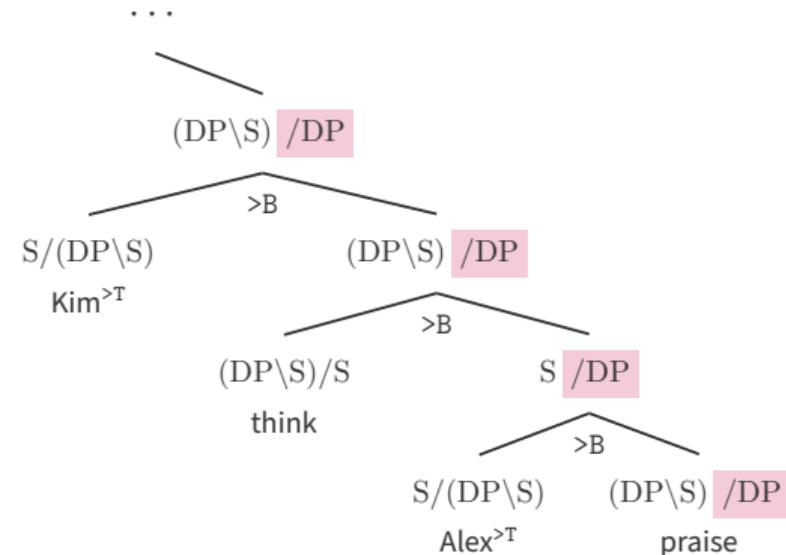
Overall, the missing object /DP **percolates** up the tree.



Function composition: Analogy with movement

The percolation of /DP can be understood in analogy with **movement** (Steedman, 2024).

That is, successive application of $>B$ is like ...


- Leave a “trace” y .
- Apply function application instead.
- Abstract y at the top

Function composition: LDDs

Nice thing: function composition can be applied **over clause boundaries**.

Hence, the missing object /DP can percolate up over finite clause boundaries.

SPLIT

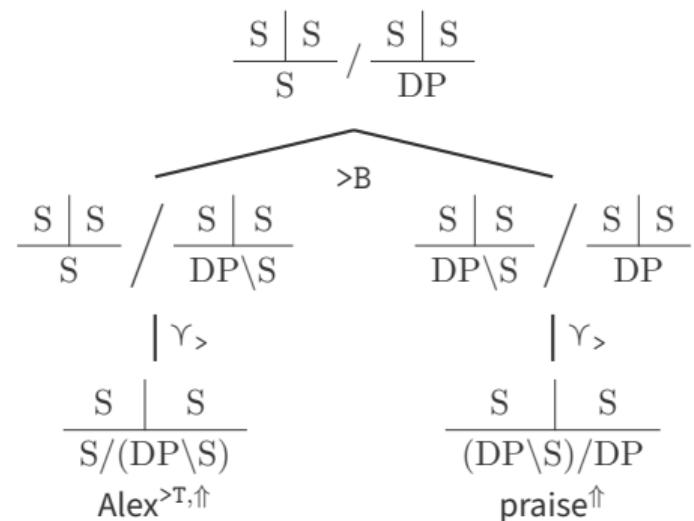
To integrate function composition into the continuation-based grammar, we propose the following unary rule.

Idea: It **“splits” a tower** with the slash at the bottom level.

$$\frac{C \mid E}{B} \Big/ \frac{D \mid E}{A} \quad \frac{C \mid D}{A} \Big\backslash \frac{C \mid E}{B}$$
$$\lambda \frac{\beta[]}{x} \cdot \frac{\alpha[\beta[]]}{f(x)} \quad \lambda \frac{\beta[]}{x} \cdot \frac{\beta[\alpha[]]}{f(x)}$$
$$\begin{array}{c} \Big| \gamma_> \\ \frac{C \mid D}{B/A} \end{array} \quad \begin{array}{c} \Big| \gamma_< \\ \frac{D \mid E}{A \setminus B} \end{array}$$
$$\frac{\alpha[]}{f} \quad \frac{\alpha[]}{f}$$

SPLIT: Intuition

SPLIT is a **partially-applied** version of the continuized function application.


Indeed, $\gamma_>$ plus $>$ is equivalent to $C[>]$ (it is a conservative extension).

$$\frac{S \mid S}{DP \setminus S} \quad = \quad \frac{S \mid S}{DP \setminus S}$$
$$\frac{\frac{S \mid S}{DP \setminus S} / \frac{S \mid S}{DP} \quad \frac{S \mid S}{DP}}{\gamma_>} \quad \text{everyone} \quad \frac{\frac{S \mid S}{(DP \setminus S) / DP} \quad \frac{S \mid S}{DP}}{C[>]} \quad \text{everyone}$$
$$\frac{S \mid S}{(DP \setminus S) / DP} \quad \text{praise}^\uparrow$$

Split and compose

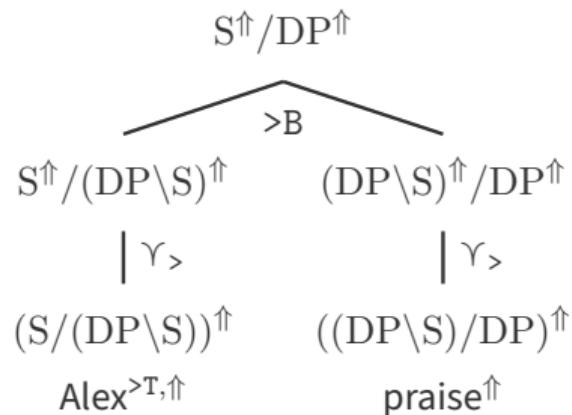
SPLIT gives us functions from one tower to another.

Upshot: These higher-order functions can be composed via function composition.

Simplified notation

Since it is a bit cumbersome to write functions between towers every time, we use the following abbreviations.

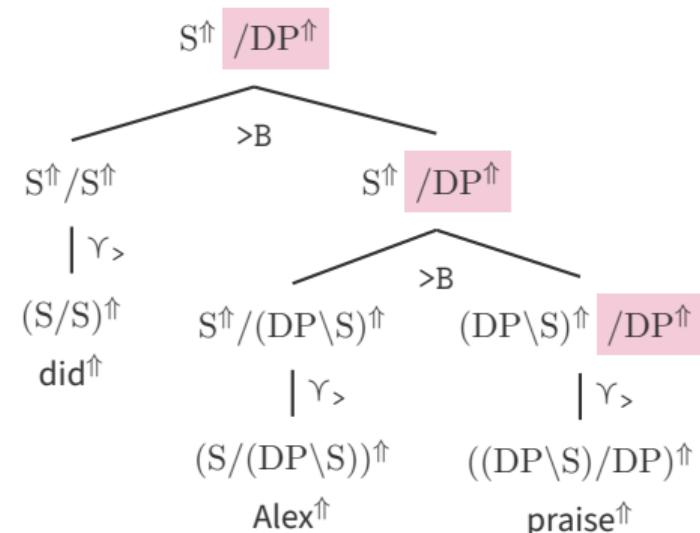
$$A^{\uparrow} = \frac{S \mid S}{A} \text{ (pure scope-taker)}$$


$$A^{\triangleright} = \frac{S \mid DP \triangleright S}{A} \text{ (binder)}$$

$$\triangleright A = \frac{DP \triangleright S \mid S}{A} \text{ (bindee)}$$

$$\triangleright A^{\triangleright} = \frac{DP \triangleright S \mid DP \triangleright S}{A} \text{ (lifted with } DP \triangleright S)$$

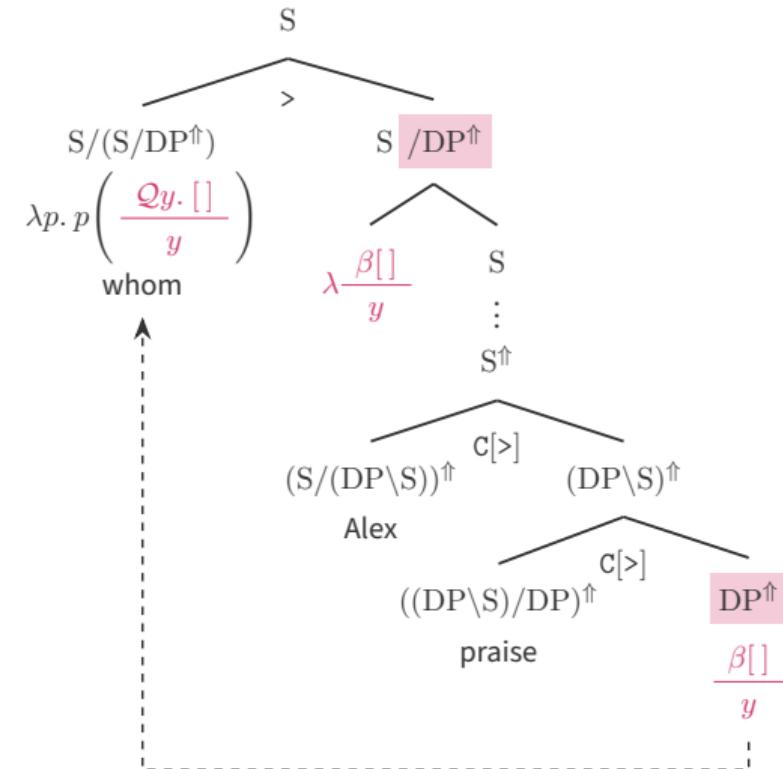
Split and compose, in the simplified notation


With this notation, the derivation is closer to the one without towers.

Split and compose (contd.)

Let's see how *wh*-dependencies can be derived.

We can see that **the “lifted” DP argument** $/DP^{\uparrow\uparrow}$ percolates up the tree.



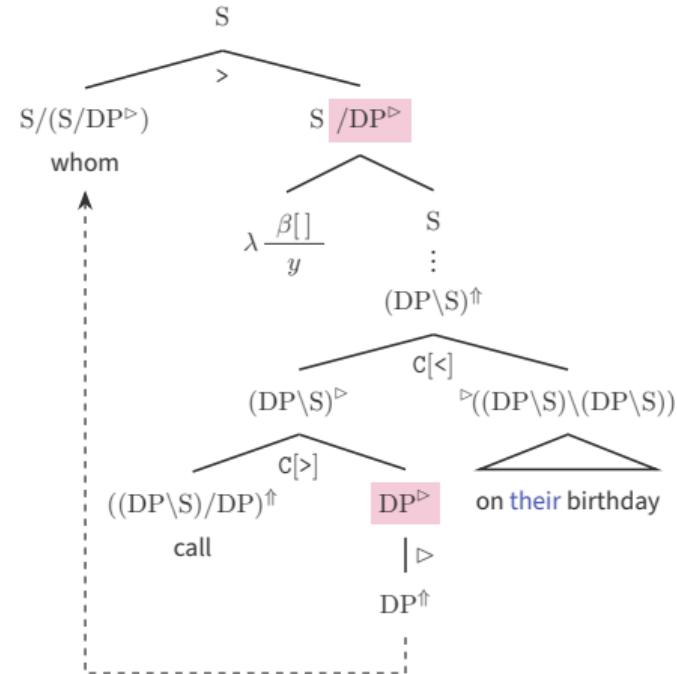
Split and compose (contd.)

Using the analogy with movement again, it is as if we have moved up DP^\uparrow .

At the end, $\beta[]$ is replaced with $Qy.[]$.

In effect, $Qy.[]$ is **reconstructed** into the object position.

Account

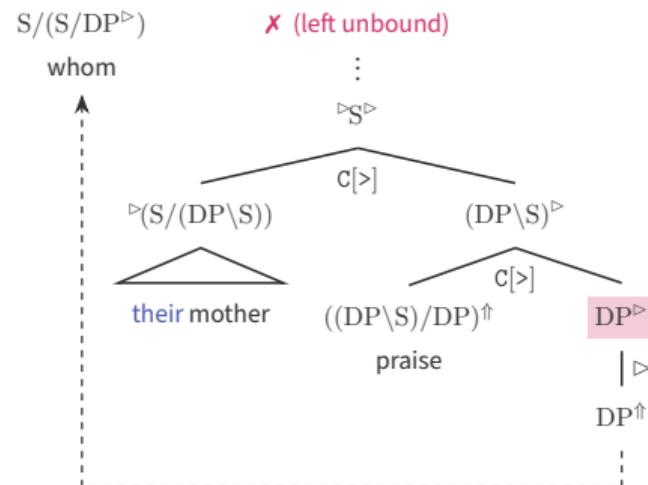


Order-sensitivity of binding

We show how our account allows a *wh*-phrase to bind a pronoun.

(16) *Whom_i* did Alex call on *their_i* birthday?

We can bind a pronoun by applying \triangleright to the pre-movement DP $^\uparrow$.

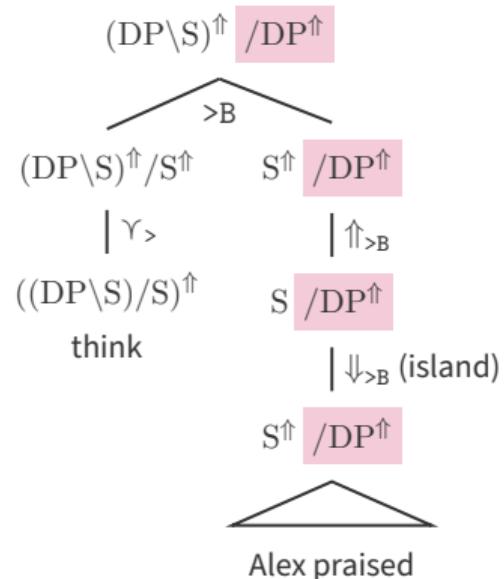


Order-sensitivity of binding: Crossover

What about the crossover case?

(10) *Whom_i* did *their_i* mother praise ?

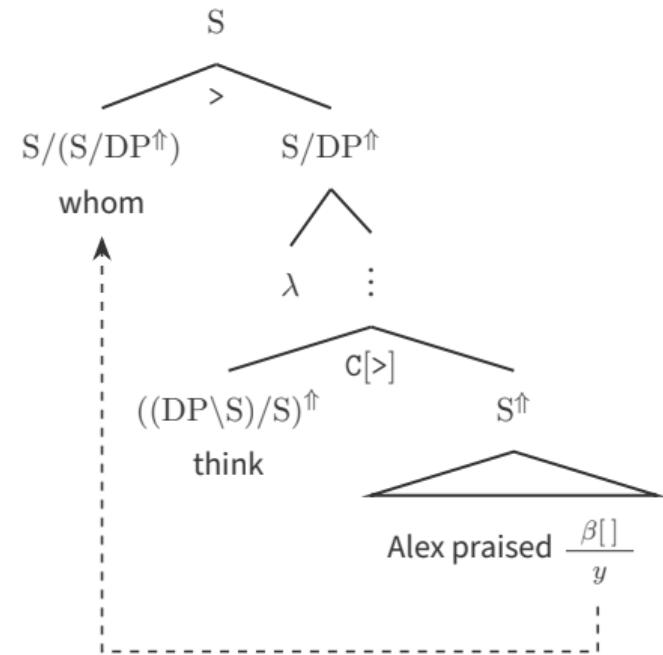
The *wh*-scope is reconstructed into the object position, from which it cannot bind the pronoun. Thus, like B&S's original theory, our account predicts that binding exhibits **order-sensitivity**.



Crossover in LDDs

Now let's turn to LDDs.

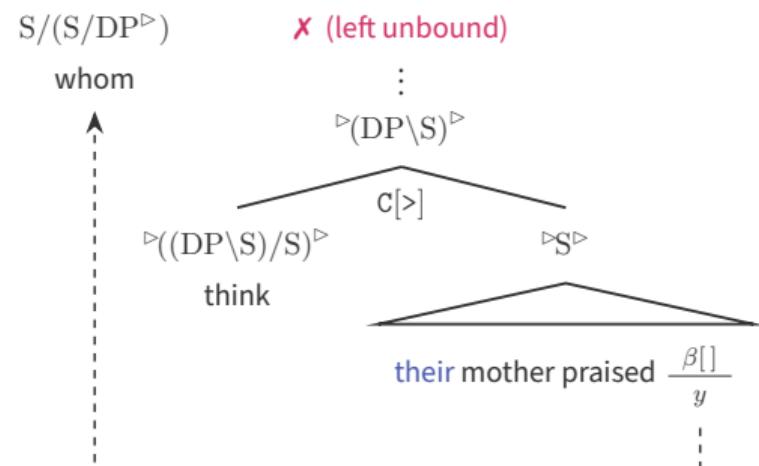
(14) Whom does Kim think [Alex praised __]?


We can basically maintain the original analysis (without towers). Namely, we can inherit $/DP^\uparrow$ over finite clause boundaries.

Weak crossover in LDDs (contd.)

Crucially, our account does NOT assume intermediate gaps.

In movement-based terms, *wh*-phrases are moved “in one step”.



Weak crossover in LDDs (contd.)

As we don't have any int. gaps, we retain the **order-sensitivity even in LDDs**.

(14) *?*Whom_i does Kim think [their_i mother praised __]?*

This is predicted to be bad for the same reason as the non-embedded case (10).

Summary of the account

- The **gap-free** account with function composition derives *wh*-dependencies in a way similar to movement.
- Our proposed rule **SPLIT** allows the scope of a *wh*-phrase to be **reconstructed** to its original position.
- As a result, we can predict the crossover effect even in LDDs.

Conclusion: We presented a refined version of the **continuation-based theory** that is compatible with **long-distance dependencies**.

Thank you for listening!

For any follow-up questions, please contact me at:

daiki.matsuoka@is.s.u-tokyo.ac.jp

References i

Barker, C. (2012). Quantificational binding does not require c-command. *Linguistic Inquiry*, 43(4), 614–633. https://doi.org/10.1162/ling_a_00108

Barker, C., & Shan, C.-c. (2014). *Continuations and Natural Language*. Oxford University Press.

Bruening, B. (2014). Precede-and-command revisited. *Language*, 90(2), 342–388. <https://doi.org/10.1353/lan.2015.0045>

Charlow, S. (2014). *On the semantics of exceptional scope* [Doctoral dissertation, New York University].

Chierchia, G. (2020). Origins of weak crossover: When dynamic semantics meets event semantics. *Natural Language Semantics*, 28(1), 23–76. <https://doi.org/10.1007/s11050-019-09158-3>

References ii

Jacobson, P. (1999). Towards a variable-free semantics. *Linguistics and Philosophy*, 22(2), 117–185. <https://doi.org/10.1023/A:1005464228727>

Leong, C. S.-Y., & Erlewine, M. Y. (2019). Long-distance dependencies in continuation grammar. *Proceedings of PACLIC 33*, 114–122.

Postal, P. (1971). *Cross-over phenomena*. Holt, Rinehart; Winston.

Reinhart, T. (1983). *Anaphora and semantic interpretation*. Routledge.

Steedman, M. (2000). *The Syntactic Process*. MIT Press.

Steedman, M. (2024). On internal merge. *Linguistic Inquiry*, 1–59.
https://doi.org/10.1162/ling_a_00521