
Appositive Projection as Implicit Context
Extension in Dependent Type Semantics

Daiki Matsuoka1[0009−0008−4378−6580](B), Daisuke Bekki2[0000−0002−9988−1260],
and Hitomi Yanaka1[0000−0003−0354−6116]

1 The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
{daiki.matsuoka, hyanaka}@is.s.u-tokyo.ac.jp

2 Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
bekki@is.ocha.ac.jp

Abstract. The content of an appositive relative clause is a type of con-
ventional implicature, that is, secondary or supplementary information
of a sentence. Focusing on discourse behaviors and scopal properties,
we present an analysis of appositive relative clauses based on Dependent
Type Semantics, a type-theoretical semantic framework. Our central idea
is that appositive content implicitly extends the typing context during
the process of type checking, reflecting a property of conventional impli-
catures, namely, that they directly update the common ground.

Keywords: Dependent Type Semantics · appositive relative clause ·
conventional implicature · projection · not-at-issue content

1 Introduction

Appositive relative clauses (ARCs) typically convey secondary or supplementary
information apart from the at-issue content (i.e., the main point of the whole
sentence). As such, they are highly independent of their matrix clauses. For
example, the ARC in (1) is not subject to negation, considering that (1) implies
the appositive content (the professor had met Kim before).

(1) The professor did not recognize Kim, whom she had met before.

This behavior is called projection, which is a central topic in formal semantics.
[22] argued that projective meanings triggered by specific words or constructions
such as ARCs form a distinct meaning class, called conventional implicatures
(CIs) [11], and proposed a semantic system in which CIs and at-issue meanings
are given separate semantic representations.

However, since the proposal by [22], it has been suggested that the content of
an ARC can have various types of interactions with that of the matrix clause [1,3,
24,29]. Above all, there can be anaphoric dependencies between an ARC and its
matrix clause, as shown by (2), which is quite difficult to explain if we separate
the two clauses completely.

2 D. Matsuoka et al.

(2) John1, who nearly killed a woman2 with his1 car, visited her2 in the
hospital. (adapted from [3])

Nonetheless, the interaction is not entirely free. For instance, pronouns inside
an ARC cannot be bound by non-referential quantifiers [8, 19].

(3) #No professor1 recognized Kim, whom they1 had met before.

Therefore, it is not obvious how we can formally account for the extent to which
an ARC and its matrix clause can interact with each other.

To address this issue, we present an analysis based on Dependent Type Se-
mantics (DTS) [5, 7], a type-theoretical framework of natural language seman-
tics. The basic idea of DTS is to use types as semantic representations (SRs)
and to reduce the felicity of a sentence to the well-formedness of its SR, which
is checked through a process called type checking. This setup provides us with
a unified method for capturing two classes of not-at-issue meanings — CIs and
presuppositions — as well as at-issue meanings.

The remainder of this paper is structured as follows. First, we describe several
properties of ARCs (Section 2) and introduce the details of DTS (Section 3).
Then, we propose an extension of DTS (Section 4) and show what predictions
it makes (Section 5). After briefly discussing some related work (Section 6), we
conclude with future research directions (Section 7).

2 Properties of Appositive Relative Clauses

2.1 Discourse Properties

Not-at-issueness The content of an ARC is generally supplementary; it is not
the central point of an utterance. Hence, ARCs contribute to a conversational
context in a particular way, as illustrated in (4). In (4b), B’s response with no
targets the content of the matrix clause of (4a), which is at-issue. In contrast, (4c)
shows that such a response is not possible in regard to the appositive content.

(4) a. A: Mary, who is a post-doc researcher, gave a talk at the conference.

b. B: No, she didn’t. She wasn’t able to attend.

c. B: #No, she isn’t. She is still in her PhD course.

Thus, appositive content directly updates the common ground in a non-negotiable
manner [3, 18], which is not the case with at-issue content.

Anti-backgroundedness ARCs basically add new information to a discourse.
Thus, if an ARC repeats something that has already been established as part
of the common ground, it results in redundancy. More broadly, this property
distinguishes CIs from presuppositions, which are supposed to already be in the
common ground. As shown in (5), an ARC containing information that has al-
ready been introduced leads to infelicity, while such repetition is not problematic
with know, which presupposes its complement.

Appositive Projection as Implicit Context Extension in DTS 3

(5) a. #Bob has been friends with a linguistics student for a long time, and
says that the student, who majors in linguistics, is very diligent.

b. Bob has been friends with a linguistics student for a long time, but
doesn’t know that she majors in linguistics.

2.2 Scopal Properties

Projection The content of an ARC is projective, meaning that it is not subject
to entailment-canceling operators in the matrix clause. Here are examples of
negation (6a) and conditional antecedent (6b).

(6) a. It is not the case that Ann, who danced, met John. ⇒ Ann danced.

b. If Ann, who danced, met John, Mary was happy. ⇒ Ann danced.

Quantifier Scope ARCs cannot scopally interact with a quantified noun phrase
(NP) unless it is referential. (7) shows that non-referential quantified NPs can
neither be modified by an ARC nor bind a pronoun inside an ARC.3 By contrast,
referential quantified NPs can have both types of interactions, as described in
(8).

(7) a. #{Every/No} girl, who met John, danced.

b. #{Every/No} girl1 met John, who praised her1.

(8) a. {A/Some} girl, who met John, danced.

b. {A/Some} girl1 met John, who praised her1.

We remark that the indefinite NPs in (8) must be interpreted as specific indefi-
nites [20, 29], which basically have only the widest-scope reading. This point is
illustrated by (9), where a professor takes wider scope than the conditional.

(9) If a professor, who is famous, meets Ann, she will be surprised. (⇒ there
is a famous professor.)

2.3 Anaphoric Dependencies

Anaphoric links can be established between an ARC and its matrix clause in
both directions (10). Presupposition resolution, which can also be regarded as
an anaphoric process [23], exhibits the same behavior. (11) shows examples of
the additive particle too.

3 Note that an ARC can be adjacent to a non-referential quantified NP [4,9, 19].

(i) Less than half the climbers, who were French nationals, made it to the summit.
(adapted from [19])

The ARC here is not semantically in the scope of less than half the climbers but
rather targets the whole restrictor. Because we presently cannot ascertain what
triggers this reading, we leave the analysis for future research.

4 D. Matsuoka et al.

(10) a. (Appositive → matrix) John, who met a girl1, praised her1.

b. (Matrix → appositive) A girl1 met John, who praised her1. (=(8b))

(11) a. (Appositive → matrix) John, who praised Ann, praised Mary too.

b. (Matrix → appositive) John1 praised Ann, who praised him1 too.

The same pattern can be observed for inter-sentential anaphora (12).

(12) a. (Appositive → matrix) John, who met a girl1, smiled. She1 danced.

b. (Matrix → appositive) A girl1 danced. John, who met her1, smiled.

3 Framework

3.1 Dependent Type Theory

The theoretical foundation of DTS is dependent type theory (DTT) [16, 17], a
type theory with types that may depend on terms (dependent types). We can
use DTT as a logical framework by viewing a type and its terms as a proposition
and its proofs. For instance, we can regard a product type A×B as representing
the conjunction A ∧B because its proof is a pair of proofs of A and B.

We can extend this correspondence to predicates using dependent types. For
example, the type come(x), representing the proposition “x comes,” depends on
the variable x. Here, the one-place predicate come has type e → type, where e

is the type of entities and type is the (higher-order) type of types.
Because types may depend on terms in DTT, we need to handle the well-

formedness of types and typing contexts with inference rules. Hence, in addition
to usual typing judgments Γ ⊢ M : A (the term M has type A under Γ), DTT
has judgments of the form Γ ⊢ A : type (A is a well-formed type under Γ) and
Γ valid (Γ is a well-formed context). Figure 1 shows the inference rules for well-
formed contexts. As we will see in the following, this object-level representation of
well-formedness is useful for analyzing the felicity of natural language utterances.

(ctx-emp)
⟨⟩ valid

Γ valid Γ ⊢ A : type
(ctx-ex) (x /∈ dom(Γ))

Γ, x : A valid

Fig. 1. Inference rules for well-formed contexts. The rule (ctx-emp) introduces the
empty context ⟨⟩ (which is omitted when unnecessary). The rule (ctx-ex) forms a well-
formed context by extending one with a well-formed type and a fresh variable.

DTT has two special types: the dependent product type (Σ-type) (x : A)×B
and the dependent function type (Π-type) (x : A) → B. The former corresponds
to the existential quantification ∃x ∈ A.B, and the latter corresponds to the
universal quantification ∀x ∈ A.B. Their inference rules are listed in Figure 2.

Central to our approach are the rules (ΣE1) and (ΣE2), which take the first
and second elements of a pair ⟨M,N⟩, respectively. With these rules, we can
refer to the content of a Σ-type from outside its scope by “decomposing” pairs.

Appositive Projection as Implicit Context Extension in DTS 5

Γ ⊢ A : type Γ, x : A ⊢ B : type
(ΣF)

Γ ⊢ (x : A)×B : type

Γ ⊢ M : A Γ ⊢ N : B[x := M]
(ΣI)

Γ ⊢ ⟨M,N⟩ : (x : A)×B

Γ ⊢ M : (x : A)×B
(ΣE1)

Γ ⊢ π1M : A

Γ ⊢ M : (x : A)×B
(ΣE2)

Γ ⊢ π2M : B[x := π1M]

Γ ⊢ A : type Γ, x : A ⊢ B : type
(ΠF)

Γ ⊢ (x : A) → B : type

Γ, x : A ⊢ M : B
(ΠI)

Γ ⊢ λx.M : (x : A) → B

Γ ⊢ M : (x : A) → B Γ ⊢ N : A
(ΠE)

Γ ⊢ MN : B[x := N]

Fig. 2. Inference rules of the Σ-type and the Π-type. In the labels, F , I, and E each
stand for formation, introduction, and elimination (e.g., (ΣI) is the introduction rule
of the Σ-type).

For example, consider (13a) and its semantic representation (13b). We adopt the

notational convention that (x : A)×B can alternatively be written as
[
x : A
B

]
.

(13) a. A girl came.

b.

u :

[
x : e
girl(x)

]
come(π1u)


Here, the set of girls is represented by the type (x : e)× girl(x), which consists
of pairs of an entity x and a proof of its being a girl. The part come(π1u) means
that the girl came, because π1u is the first element of u, namely, the entity x.
In this way, Σ-types show the same effect as if their scope were extended, which
is critical for capturing the externally dynamic nature of existential quantifica-
tion [12].

3.2 Underspecified Type

DTS extends DTT with a type of the form (x@ A)×B, an underspecified type
(@-type), which represents anaphoric or presuppositional meanings. This type
is characterized by the following inference rule:

Γ ⊢ A : type Γ ⊢ M : A Γ ⊢ B[x := M] : type
(@F)

Γ ⊢ (x@A)×B : type

(
@-elimination−−−−−−−−−−→ Γ ⊢ B[x := M] : type

)
Intuitively, x is a placeholder in B for a concrete term M of type A. The term
M is searched for when we type check the @-type, after which we replace x with
M and obtain an @-free type B[x := M].

To illustrate, consider how the pronoun she is resolved in (14a). The condition
for the second sentence to be felicitous, which we call its felicity condition (FC),
is described as in (14b), where the SR of the first sentence is in the typing
context, meaning it has already entered the common ground. Here we use the

6 D. Matsuoka et al.

square bracket notation [· · ·] for the @-type, too. We also abbreviate (x : e)×Px
as P ∗ when P is a constant of type e → type.

(14) a. A girl came. She danced.

b. v :

[
u : girl∗

come(π1u)

]
︸ ︷︷ ︸
A girl came.

⊢
[
w @ female∗

dance(π1w)

]
︸ ︷︷ ︸

She danced.

: type

To derive (14b), we need to find a term of type female∗, as required by the second
premise of the rule (@F). By introducing the world knowledge that every girl is
female and accordingly assuming a constant g-to-f : (u : girl∗) → female(π1u),
we can construct the term Mv = ⟨π1π1v, g-to-f(π1v)⟩ of type female∗. Substi-
tuting this term for w, we obtain dance(π1Mv), which reduces to dance(π1π1v).
This result correctly predicts that she can be bound by a girl, because π1π1v
refers to the entity introduced by the first sentence.

3.3 Type Checking and @-elimination

To completely describe the formal system, we need to specify how we can sub-
stitute a term for the variable of an @-type during the process of type checking.
In a recent version of DTS [5], the type checking function [[−]] returns a set of
derivation trees for a typing judgment, with the clause for the @-type being as
follows (see [5] for the clauses of other type constructors).4 Note that the value
of [[−]] is not a single derivation because there may be multiple ways to construct
a term of type A.

[[Γ ⊢ (x@A)×B : type]] =

Norm(D3)

∣∣∣∣∣∣∣∣
D1 ∈ [[Γ ⊢ A : type]] (Let D1’s root be Γ ⊢ A′ : type)

D2 ∈ [[Γ ⊢ M : A′]] for some term M .

D3 ∈ [[Γ ⊢ B[x := M] : type]]


The derivations of the three premises of the rule (@F) are internally constructed,
but D1 and D2 are discarded and only D3 is returned (after normalization).
Thus, what we obtain as a result of type checking (x @ A) × B is the normal
form of B[x := M], as if it were the type we wanted to check from the beginning.
Hereafter, we refer to this procedure as @-elimination.

To see how @-elimination works, consider the FC (14b) again. Figure 3 de-
scribes a series of steps to derive it. In the boxes, we write the premises left to
prove the FC, whose derivations are constructed one by one (each step is shown
with a double arrow). The first step checks the well-formedness of female∗,
which is trivial. In the second step, we look for a concrete term of type female∗,
and one possible answer is Mv = ⟨π1π1v, g-to-f(π1v)⟩, as we have already seen
in Section 3.2. The result of this search is propagated to the third premise (p3),
which then requires dance(π1Mv) to be well-formed. After this final premise is

4 We define Norm as a function that returns, for any derivation of a typing judgment
Γ ⊢ M : A, a derivation where M is reduced to its normal form.

Appositive Projection as Implicit Context Extension in DTS 7

derived (indicated by “(done)”), what is returned as a result is Norm(D3), whose
root is the judgment v : [· · ·] ⊢ dance(π1π1v) : type. We can see that the original
@-type has been successfully transformed into the type that corresponds to the
expected interpretation of the pronoun she. In this way, we can simultaneously
perform type checking and eliminate @-types.

The premises to derive (14b)

(p1) v :

[
u : g∗

c(π1u)

]
⊢ f∗ : type

(p2) v : [· · ·] ⊢ ? : f∗

(p3) v : [· · ·] ⊢ d(π1w)[w := ?] : type

(p1)
==================⇒
D1[v : [· · ·] ⊢ f∗ : type]

(p2) v : [· · ·] ⊢ ? : f∗

(p3) v : [· · ·] ⊢ d(π1w)[w := ?] : type

(p2)
=================⇒
D2[v : [· · ·] ⊢ Mv : f∗]

(p3) v : [· · ·] ⊢ d(π1Mv) : type

(p3)
=======================⇒
D3[v : [· · ·] ⊢ d(π1Mv) : type]

(done)

return Norm(D3) =

...

v :

[
u : g∗

c(π1u)

]
⊢ d(π1π1v) : type



Fig. 3. Process of deriving (14b). We abbreviate the names of the predicates (e.g.,
dance 7→ d). We also write D[J] for a derivation D with root J . Mv stands for the term
⟨π1π1v, g-to-f(π1v)⟩.

3.4 Two-stage Validation

Before presenting our proposal, we must clarify how DTS processes discourses,
which is crucial in distinguishing between at-issue and not-at-issue content. Im-
portantly, type checking confirms only the FC of a sentence; it does not consider
whether it will be accepted by the addressee. In other words, whether the SR
is added to the typing context is determined after it is type checked, based on
some pragmatic factors.5 In this paper, we assume two validation stages before
an SR A is added to the context Γ .

(i) Type checking: by calculating [[Γ ⊢ A : type]], we check the well-formedness
of A under Γ and eliminate the @-types in A (let Γ ⊢ A′ : type denote the
resultant judgment).

(ii) Context extension: we check whether A′ is acceptable under Γ . If so, we
extend Γ with A′ by the rule (ctx-ex).

5 Although it is beyond the scope of the present paper to characterize such factors,
we require at least that accepting the assertion A does not contradict the preceding
discourse Γ (i.e., Γ, x : A ⊬ ⊥) and does not lead to redundancy (i.e., there is no M
s.t. Γ ⊢ M : A).

8 D. Matsuoka et al.

4 Proposal

The guiding intuition for our proposal is that CIs directly update the common
ground, as we observed in Section 2.1. In light of the above-mentioned two-stage
validation, this direct update should be before step (ii) (context extension); oth-
erwise CIs would be directly challengeable (just like at-issue content), which
would contradict their not-at-issueness. Thus, we must handle CIs during step
(i) (type checking). @-types, which represent anaphoric or presuppositional con-
tent, are not appropriate for this purpose because CIs are anti-backgrounded.
Therefore, we need a mechanism by which some content is added to, not resolved
by, the context during type checking.

4.1 CI Type

We propose extending DTS with a new type (x◁A)×B (a CI type), characterized
by the following inference rule:

Γ ⊢ A : type Γ, x : A ⊢ B : type
(◁F)

Γ ⊢ (x◁A)×B : type

(
◁-elimination−−−−−−−−−−−→ Γ, x : A ⊢ B : type

)

As with the @-type, elimination of the ◁-type is defined in a clause for [[−]].

[[Γ ⊢ (x◁A)×B : type]] =

{
D2

∣∣∣∣∣ D1 ∈ [[Γ ⊢ A : type]] (Let D1’s root be Γ,∆ ⊢ A′ : type)

D2 ∈ [[Γ,∆, x : A′ ⊢ B : type]]

}

Unlike the @-type, this type does not require a term of A for its well-formedness.
Instead, it extends the context Γ with x : A when it is eliminated after the two
premises are derived. Conceptually, this context extension during type checking
is implicit in that it leaves no room for the addressee to choose whether to accept
or reject A. Such a response is possible only after step (i), namely, in step (ii)
(which is, so to speak, an “explicit” context extension). This property of the
◁-type captures the not-at-issueness and anti-backgroundedness of CIs.

With the ◁-type, computing [[Γ ⊢ A : type]] may change the original context
Γ as well as the type A. Hence, we revise the two-stage validation as indicated
by the underlines below (∆ is empty when A contains no ◁-types). Figure 4
summarizes how we handle different types of content via these two steps.

(i) Type checking: by calculating [[Γ ⊢ A : type]], we check the well-formedness
of A under Γ and eliminate the @-types and ◁-types in A (let Γ ,∆ ⊢ A′ :
type denote the resultant judgment).

(ii) Context extension: we check whether A′ is acceptable under Γ ,∆. If so,
we extend Γ ,∆ with A′ by the rule (ctx-ex).

Appositive Projection as Implicit Context Extension in DTS 9

[[
Γ ⊢ A : type

]]
Γ,∆ ⊢ A′ : type Γ,∆, x : A′ valid

(i) type checking (ii) context extension

add CI content (x◁A)

resolve anaphoric/presuppositional content (x@A)

add at-issue content

Fig. 4. Overview of how each type of content is processed in DTS

4.2 Permutation

Without modification, the introduction of the ◁-type clashes with other parts
of the theory. Suppose that while type checking (x : A) → B, we verified Γ, x :
A ⊢ B : type, resulting in an extended context Γ, x : A, y : C due to a ◁-type
inside B. We cannot apply the rule (ΠF) in such cases because x : A is not at
the right end of the context.

...
Γ ⊢ A : type

...

Γ, x : A, y : C ⊢ B′ : type
(ΠF) ×

To address this issue, we utilize the following structural rule (permutation),
which is admissible in DTT.

Γ, x : A, y : B,∆ ⊢ M : C
(perm) (x /∈ FV(B))

Γ, y : B, x : A,∆ ⊢ M : C

The side condition x /∈ FV(B) is required by the property of DTT that a type can
depend on terms: if x : A occurs free in B, exchanging the two premises would
result in an ill-formed context. We will see that this (independently motivated)
restriction is important in explaining the interaction between an ARC and a
quantified NP.

Now we can revise the type checking algorithm for the Π-type as follows (the
same applies to the Σ-type).

[[Γ ⊢ (x : A) → B : type]]

=



... D′
1

Γ,∆,Θ ⊢ A′ : type

... D′
2

Γ,∆,Θ, x : A′ ⊢ B′ : type
(ΠF)

Γ,∆,Θ ⊢ (x : A′) → B′ : type

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D1 ∈ [[Γ ⊢ A : type]]

(Let D1’s root be Γ,∆ ⊢ A′ : type)

D2 ∈ [[Γ,∆, x : A′ ⊢ B : type]]

(Let D2’s root be Γ,∆, x : A′, Θ ⊢ B′ : type)

D′
1 = Extend(D1,D2, x)

D′
2 = Arrange(D2, x)


Here, Extend(D1,D2, x) simply extends the context of D1 with the variable dec-
larations in D2 after x (Θ here). Arrange(D, x) is a partial function that applies
the rule (perm) to D and returns the derivation (if any) such that its root has
the variable x at the right end of the context. If there is no such derivation, type
checking fails because the result of [[−]] is empty.

10 D. Matsuoka et al.

5 Predictions

In this section, we demonstrate that the ◁-type correctly predicts the behavior
of ARCs. To begin with, we explain the theoretical setups for the analysis.

As our syntactic framework, we adopt Combinatory Categorial Grammar
(CCG) [25], a lexicalized grammar with a transparent syntax-semantics interface.
(15) is the lexical entry for the nominative relative pronoun who.6

(15) whonom,+app︸ ︷︷ ︸
surface form

:= (NP ↑\NP)/(S\NP)︸ ︷︷ ︸
syntactic category

: λp.λx.λq.λy⃗.

[
v ◁ px
qxy⃗

]
︸ ︷︷ ︸
semantic representation

NP ↑ (the category of generalized quantifiers) stands for T/(T\NP) or T\(T/NP),
where T is a variable ranging over categories.7 The occurrences of T and their
corresponding variables (x⃗, y⃗, . . .) are properly instantiated through a derivation.
Figure 5 shows a sample CCG derivation that involves an ARC.

Ann

NP ↑ :

λpx⃗.p(a)x⃗

who

(NP ↑\NP)/(S\NP) :

λpxqy⃗.[· · ·]

danced

S\NP :

λx.dance(x)
>

NP ↑\NP : λxqy⃗.

[
v ◁ dance(x)
qxy⃗

]
>

NP ↑ : λqy⃗.

[
v ◁ dance(a)
q(a)y⃗

]
met

(S\NP)/NP :

λyx.meet(x, y)

John

NP ↑ :

λpx⃗.p(j)x⃗
<

S\NP : λx.meet(x, j)

>

S :

[
v ◁ dance(a)
meet(a, j)

]

Fig. 5. CCG derivation for Ann, who danced, met John

Here are some details of the derivation. In the right part, the phrase met John
is composed by instantiating the category of John as (S\NP)\((S\NP)/NP)
(i.e., T = S\NP). In this case, λx⃗. is realized as a single λ-abstraction (λx.).
In the part where Ann and who danced are combined, the category of Ann is
instantiated with T = NP ↑ (which means λx⃗. = λq.λy⃗.). Finally, the two parts
form the whole sentence after the left NP ↑ is instantiated with T = S, in which
case λy⃗. is realized as a null sequence (i.e., the SR is λq.[· · ·]).

Next, we specify how DTS makes predictions. The felicity of an utterance
is predicted through the two-stage validation: if both of the two steps succeed,
then the utterance is felicitous. We define that DTS predicts inferences in the
following way, based on [7] with some modifications.

(16) Let P,H be natural language sentences with P,H as their SRs. Suppose
that there exist derivations D ∈ [[⊢ P : type]] with root Γ ⊢ P ′ : type and

6 We adopt the “result-left” notation here: a phrase of category A\B (resp. A/B)
results in an A when combined with a B on its left (resp. right).

7 Following [25], we stipulate that T must result in S (e.g., S\NP , S/NP ,
(S\NP)/NP).

Appositive Projection as Implicit Context Extension in DTS 11

D′ ∈ [[Γ, y : P ′ ⊢ H : type]] with root Γ ′ ⊢ H ′ : type.
Then, DTS predicts that P implies H if and only if there exists a term
M s.t. Γ ′ ⊢ M : H ′ is derivable.

We assume that projection is a type of implication that survives when we embed
the premise P into entailment-canceling operators [28].

5.1 Projection

First, we verify the projection behavior of ARCs. (17b) shows the FC of (17a),
which is the premise of (6a). Negation ¬A is defined as (x : A) → ⊥ in DTS,
where ⊥ is the empty type (i.e., the type representing contradiction).

(17) a. It is not the case that Ann, who danced, met John.

b. ⊢
(
v :

[
u◁ dance(a)
meet(a, j)

])
→ ⊥ : type

Figure 6 shows the process by which the FC is checked. The derivation of the
premise (p1), shown in the bottom half of the figure, results in an extended
context u : dance(a), and this change is propagated to the other premise (p2)
due to the type checking algorithm of the rule (ΠF). After (p2) is derived, we
apply the rule (ΠF) and obtain u : dance(a) ⊢ (v : meet(a, j)) → ⊥ : type.

Next, we show that (17a) implies Ann danced, whose SR is dance(a). Let Γ
be the context u : dance(a), s : (v : meet(a, j)) → ⊥. We can easily confirm that
dance(a) is well-formed under Γ . Moreover, Γ ⊢ u : dance(a) is derivable, which
satisfies the condition (16). Therefore, DTS indeed predicts that the appositive
content dance(a) projects out of the negation.

The premises to derive (17b)

(p1) ⊢
[
u◁ d(a)
m(a, j)

]
: type

(p2) v :

[
u◁ d(a)
m(a, j)

]
⊢ ⊥ : type

(p1)
======================⇒
D2[u : d(a) ⊢ m(a, j) : type]

(p2) u : d(a), v : m(a, j) ⊢ ⊥ : type

(p2)
==========================⇒
D3[u : d(a), v : m(a, j) ⊢ ⊥ : type]

(done)

return

... D2

u : d(a) ⊢ m(a, j) : type

... D3

u : d(a), v : m(a, j) ⊢ ⊥ : type
(ΠF)

u : d(a) ⊢ (v : m(a, j)) → ⊥ : type


The premises to derive (p1)

(p3) ⊢ d(a) : type
(p4) u : d(a) ⊢ m(a, j) : type

(p3)
=============⇒
D1[⊢ d(a) : type]

(p4) u : d(a) ⊢ m(a, j) : type

(p4)
=====================⇒
D2[u : d(a) ⊢ m(a, j) : type]

(done) (return D2)

Fig. 6. Process of validating (17b). The underlined parts indicate the context exten-
sion, and the gray boxes show the types transformed during type checking.

12 D. Matsuoka et al.

5.2 Intra-sentential Anaphora

As a next step, we check how our system predicts anaphoric dependencies cross-
ing the boundary between an ARC and its matrix clause. Here, we consider the
“appositive → matrix” case (10a) (repeated as (18a)) and leave the analysis of
the other direction until Section 5.5.

(18) a. John, who met a girl1, praised her1.

b. ⊢

v ◁

[
u : girl∗

meet(j, π1u)

]
[
w @ female∗

praise(j, π1w)

]
 : type

Figure 7 shows how the SR of (18a) is composed. We can see that the ARC
first combines with the NP John, and then with the predicate praised her. This
derivation results in an SR where the ◁-type for the ARC takes scope over the
@-type for the pronoun her.

John

NP ↑ : λpx⃗.p(j)x⃗

who met a girl

NP ↑/NP : λxqy⃗.

v ◁

[
u : girl∗

meet(x, π1u)

]
qxy⃗


>

NP ↑ : λqy⃗.

[
v ◁ [· · ·]
q(j)y⃗

] praised her

S\NP : λx.

[
w @ female∗

praise(x, π1w)

]
>

S :

[
v ◁ [· · ·]
[· · ·]

]

Fig. 7. CCG derivation for (18a)

Then, the FC (18b) is validated as shown in Figure 8. The crucial point is that
the @-type is type checked under the context v : [· · ·], which is the apposi-
tive content. Hence, we can eliminate the @-type in the same way as in (14b):
w := ⟨π1π1v, g-to-f(π1v)⟩. The resultant SR is praise(j, π1π1v), which correctly
predicts the interpretation that her refers back to a girl.

(p1) ⊢
[
u : g∗

m(j, π1u)

]
: type

(p2) v :

[
u : g∗

m(j, π1u)

]
⊢
[
w @ f∗

p(j, π1w)

]
: type

(p1)
==============⇒
D1 [⊢ [· · ·] : type]

(p2) v :

[
u : g∗

m(j, π1u)

]
⊢
[
w @ f∗

p(j, π1w)

]
: type

(p2)
==========================⇒
D2[v : [· · ·] ⊢ p(j, π1π1v) : type]

(done) (return D2)

Fig. 8. Process of validating (18b)

Appositive Projection as Implicit Context Extension in DTS 13

5.3 Inter-sentential Anaphora

Next, we consider anaphora between sentences. As for the “appositive→matrix”
direction (12a) (here repeated as (19)), the FC of the first sentence is (20a). After
it is validated, the context is (implicitly) extended with v : [· · ·]. After the at-
issue content smile(j) is accepted, we obtain an updated context (20b).

(19) John, who met a girl1, smiled. She1 danced.

(20) a. ⊢

v ◁

[
u : girl∗

meet(j, π1u)

]
smile(j)

 : type

b. v :

[
u : girl∗

meet(j, π1u)

]
, v′ : smile(j)

Note that the appositive and at-issue content are not distinguished in the typ-
ing context: the context (20b) is identical to what we would obtain if the first
sentence were replaced with “John met a girl. He smiled.” Since the appositive
content is available in the context, we can resolve the pronoun she in the second
sentence in exactly the same way as the previous example.

The “matrix→ appositive” direction (12b), which is repeated as (21), is more
complicated. Supposing that the first sentence is successfully type checked and
accepted, the FC of the second sentence is (22).

(21) A girl1 danced. John, who met her1, smiled.

(22) v :

[
u : girl∗

dance(π1u)

]
⊢

z ◁ [
w @ female∗

meet(j, π1w)

]
smile(j)

 : type

Figure 9 shows the derivation process. In deriving (p1), we can eliminate the
@-type with v,8 and the result is propagated to the other sub-goal (p2), as
indicated by the parts highlighted in gray. Finally, we obtain a context extended
with z : meet(j, π1π1v) (John met her), as expected.

(p1) v : [· · ·] ⊢
[
w @ f∗

m(j, π1w)

]
: type

(p2) v : [· · ·], z :

[
w @ f∗

m(j, π1w)

]
⊢ s(j) : type

(p1)
==========================⇒
D1[v : [· · ·] ⊢ m(j, π1π1v) : type]

(p2) v : [· · ·], z : m(j, π1π1v) ⊢ s(j) : type

(p2)
===============================⇒
D2[v : [· · ·], z : m(j, π1π1v) ⊢ s(j) : type]

(done) (return D2)

Fig. 9. Process of validating (21)

8 If we could not resolve the @-type here, then the entire SR would not be well-typed.
Hence, our theory predicts that the infelicity of the appositive content leads to the
infelicity of the entire utterance.

14 D. Matsuoka et al.

5.4 ARC + Non-referential Quantifier

Let us turn to the interaction with quantifiers. We first observe (23a), where an
ARC modifies every girl.9 Its FC is shown in (23b).

(23) a. #Every girl, who met John, danced.

b. ⊢ (u : girl∗) →
[
v ◁ meet(π1u, j)
dance(π1u)

]
: type

Figure 10 describes how its infelicity is predicted. When the premise (p2) is
derived, the context is extended with v : meet(π1u, j), in which u occurs free.
This prevents the application of the rule (perm), so u : girl∗ cannot be moved
to the right end of the context, causing the type checking to fail. With the failure
of type checking, DTS predicts the infelicity of (23a).

(p1) ⊢ g∗ : type

(p2) u : g∗ ⊢
[
v ◁ m(π1u, j)
d(π1u)

]
: type

(· · ·)
(p2)

===============================⇒
D2[u : g∗, v : m(π1u, j) ⊢ d(π1u) : type]

... D2

u : g∗, v : m(π1u, j) ⊢ d(π1u) : type
(perm) ×

Fig. 10. Process showing the infelicity of (23a)

We can likewise handle the case of binding. Again using every girl as our
example, we describe the FC of (24a) in (24b). We first eliminate the @-type
with u : girl∗ to obtain the reading where her is bound by every girl, which
yields (v◁praise(j, π1u))×· · · . Because u occurs free in the appositive content
praise(j, π1u), the type checking fails as in Figure 10.10

(24) a. #Every girl1 met John, who praised her1.

b. ⊢ (u : girl∗) →

v ◁

[
w @ female∗

praise(j, π1w)

]
meet(π1v, j)

 : type

In summary, the appositive content x ◁ A cannot project out if it depends on
a variable introduced by Π or Σ. Importantly, this restriction derives from the
side condition of the permutation rule, which is inherent in DTT.

9 The prediction is the same for no girl, which is translated using a Π-type ((u :
girl∗) → ¬(· · ·)).

10 Note that the type checking of (24b) succeeds if w is otherwise resolved, which
corresponds to cases where the pronoun her is not bound by every girl (e.g., where
it refers to a female person previously introduced in the discourse).

Appositive Projection as Implicit Context Extension in DTS 15

5.5 ARC + Referential Quantifier

Before checking the case of referential quantifiers, we introduce an auxiliary
assumption that a specific indefinite NP is represented by a ◁-type. This is mo-
tivated by the fact that a specific indefinite projects out of entailment-canceling
environments (like definites) and is generally new to the addressee [10]: both
properties can be straightforwardly captured by the ◁-type.11 Concretely, we
assume the following alternative lexical entry for the indefinite determiner.

(25) aspec := NP ↑/N : λn.λp.λx⃗.

[
u◁ (x : e)× nx
p(π1u)x⃗

]
Then, the sentence (26a) can be translated into (26b). Because u : girl∗, on

which the appositive content meet(π1u, j) depends, is also implicitly added to
the context, we need not apply the rule (perm) and thus type checking succeeds,
resulting in the judgment (26c).

(26) a. A girl, who met John, danced.

b. ⊢

u◁ girl∗[
v ◁ meet(π1u, j)
dance(π1u)

] : type

c. u : girl∗, v : meet(π1u, j) ⊢ dance(π1u) : type

The same line of reasoning shows the felicity of the binding case (8b), which
also accounts for the intra-sentential “matrix → appositive” anaphora (10b).
Likewise, our system can correctly predict that a specific indefinite with an
ARC projects out of conditional antecedents, which we observed in (9).

It is noteworthy that if the indefinite is interpreted as non-specific in (26b),
then the SR is (u : girl∗)× · · · , which cannot be successfully type checked for
the same reason as (23b). This result accounts for why an indefinite NP with an
ARC does not have a non-specific reading.

5.6 Additional Analysis: Clause-final ARCs

ARCs show peculiar properties when situated at the clause-final position. First,
[2] observed and [26] experimentally confirmed that clause-final ARCs can be a
target of the hearer’s direct response, which suggests that they can be at-issue.

(27) a. Liz might be with her husband, who has prostate cancer.

b. No, he has lung cancer.

Note that (27a) implies that Liz’s husband has prostate cancer, meaning that
the appositive content is not subject to the modal might.

Second, [21,24] showed that an ARC at the end of a subordinate clause can
take narrower scope than the main clause. For example, the ARC in (28a) does
not project out of the scope of if but yields an interpretation similar to (28b).

11 [14] presented a similar argument, analyzing a Persian specificity marker with the
system for CIs proposed by [22] (note that in the analysis by [14], the CI content is
the uniqueness of the nominal to be modified).

16 D. Matsuoka et al.

(28) (Adapted from [24])
[Context: someone in the department made a big mistake.]

a. If tomorrow I called the Chair, who in turn called the Dean, then we
would be in big trouble.

b. If tomorrow I called the Chair and the Chair in turn called the Dean,
then we would be in big trouble.

To capture these facts, we introduce an additional lexical entry (29) for rel-
ative pronouns appearing in clause-final ARCs.

(29) whocls-fin := ((S\(S/NP))\NP)/(S\NP) : λp.λx.λq.

[
u : qx
px

]
The SR simply conjoins the content of the matrix clause and that of the ARC
with a Σ-type. The syntactic category indicates that it combines first with a
relative clause predicate (S\NP), then with an antecedent (NP), and finally
with a clause missing the object (S/NP), thus forcing the ARC to be clause-
final.

We can predict the projection behavior by utilizing the flexible notion of
constituency in CCG. As shown in Figure 11, the clause missing the object (John
might meet) forms a constituent of S/NP due to the functional composition rule
(>B). We can thus keep the appositive content dance(a) outside the scope of
the possibility operator ♢.12 We can explain the narrow scope reading of (28a)
in the same way because I called has category S/NP .13

John

NP ↑ :

λpx⃗.p(j)x⃗

might

(S\NP)/(S\NP) :

λpx.♢px
>B

S/(S\NP) : λp.♢p(j)

meet

(S\NP)/NP :

λyx.meet(x, y)
>B

S/NP :

λy.♢meet(j, y)

Ann, who danced

S\(S/NP) : λq.

[
u : q(a)
dance(a)

]
<

S :

[
u : ♢meet(j, a)
dance(a)

]

Fig. 11. CCG derivation for John might meet Ann, who danced. We have omitted the
analysis of Ann, who danced for brevity.

12 We leave open how to implement modal operators in DTS (see, e.g., [27] for an
analysis).

13 One crucial limitation of this analysis is that it does not correctly handle scope
interactions with quantifiers. [19] observed that the following has a reading that
only the interviewed climbers were French.

(i) They interviewed less than half the climbers, who were all French nationals.

Our present analysis would predict that the ARC is in the nuclear scope of the
quantifier. We need a mechanism to pass the intersection of the restrictor and the
nuclear scope to the ARC, which will be the subject of future work.

Appositive Projection as Implicit Context Extension in DTS 17

6 Related Work

6.1 DTS-based Approach

[6] presented an analysis of CIs with DTS, which is closely related to the present
work. Their proposal was the CI operator CI(@ :: A), where the term @ :: A (an
underspecified term [7]) launches a proof search in the same way as an @-type.
Here, a specific mechanism of their system guarantees that @ :: A is never
resolved by the context. In other words, the CI content A is formalized as an
obligatorily accommodated presupposition. In this way, the operator correctly
predicts both the projection behavior and the anti-backgroundedness of CIs.

A possible concern with this analysis is that it might not be compatible with
other analyses of presuppositions with DTS. For instance, [5] recently proposed
the following fallback procedure upon the failure of type checking, which is meant
to reflect the distinction between global and local accommodation.

(30) If no term M with x1 : A1 . . . xn : An ⊢ M : A is found in type checking
(x@A)×B, the type checker can do either of the following:

a. Global accommodation: add a constant symbol of type (x1 : A1) →
. . . (xn : An) → M to the signature and re-run the type checking.

b. Local accommodation: replace the @-type with (x : A) × B and
continue the type checking.

If we adopt this definition, the CI operator incorrectly predicts that ARCs can
take scope under non-referential quantifiers. (31) is a schematized SR represent-
ing cases where an ARC is bound by every NP.

(31) (u : A) → (. . .CI(@ :: B(u)) . . .)

Whether the type checker performs global or local accommodation of B(u), the
type checking does not fail, and this predicts that (31) is well-formed. The result
is the same if we replace @-terms with @-types. Hence, this justifies introducing
the CI type, a new operator independent of accommodation, in addition to the
existing @-term/type.

6.2 Dynamic Approach

[3] and several related studies analyzed ARCs with dynamic semantics, based on
the same idea as ours, namely, that appositive content directly updates the com-
mon ground. Their approach utilizes discourse referents (drefs) for propositions.
Appositive content constrains the dref pcs representing the common ground,
while at-issue content targets another dref p, which later updates pcs.

Although they covered various phenomena related to ARCs, it remains un-
clear how to account for the fact that they do not scopally interact with non-
referential NPs. One possible solution is to integrate the proposal by [19] for nom-
inal appositives, which also employs a dynamic approach. However, [3] and [19]
substantially differ in the setup of dynamic semantics. For instance, [3] treats a

18 D. Matsuoka et al.

discourse referent as a partial function from possible worlds to entities, while [19]
regards one as ambiguous between singular and plural entities. We believe fur-
ther investigation is necessary to reconcile these differences.

6.3 Orphan Approach

Following [22] and many others, we posited that an ARC is locally attached to
its antecedent in its surface position, with the independence of the appositive
content handled at the semantic level. In contrast, some studies assume a dif-
ferent syntactic structure, where an ARC is viewed as an “orphan,” that is, a
clause that is not integrated with its antecedent but shifted to a structurally
higher position.

For instance, [8] proposed that an ARC is an independent matrix clause,
with the relative pronoun interpreted as an E-type pronoun. More recently, [24]
extended this idea and suggested that an ARC can be attached to any proposi-
tional node dominating the antecedent.

A question that arises with this approach is why the relative pronoun of
an ARC must be coindexed with the antecedent, even though it is an E-type
pronoun. Consider the contrast between (32a) and (32b). The pronoun her allows
inter-sentential anaphora, whereas the relative pronoun whom does not. If the
relative pronoun is E-type, then (32b) is predicted to be felicitous.

(32) a. Ann1 has been annoyed recently. The culprit is her nasty colleague2.
She2 always teases her1.

b. Ann1 has been annoyed recently. #The culprit is her nasty colleague2,
whom1 she2 always teases.

Thus, a formal procedure needs to be implemented to ensure appropriate coin-
dexation of relative pronouns and NPs.

7 Conclusion

We proposed an extension of DTS with the CI type (x◁A)×B, which implicitly
extends the typing context during type checking. This mechanism reflects the
idea that CIs directly update the common ground. Our proposal can predict
the projection behavior of appositive content and the anaphoric dependencies
between ARCs and their matrix clauses. It also captures the (non-)interactions
between ARCs and quantified NPs, based on the restriction on the permutation
rule.

In future work, it would be interesting to consider perspective shift with
CIs [13]. Although CIs generally express commitments made by the speaker,
they can also be attributed to other attitude holders. For instance, the appositive
content in (33) seems to describe the belief of the speaker’s aunt.

(33) My aunt is extremely skeptical of doctors in general. She says that den-
tists, who are only in it for the money anyway, are not to be trusted at
all. (adapted from [13])

Appositive Projection as Implicit Context Extension in DTS 19

[15] analyzed this phenomenon as a type of discourse anaphora: the contextual
information determines the perspective under which a CI is interpreted. Follow-
ing this idea, we could revise the lexical entry of the relative pronoun of an ARC
so that it includes an @-type for an appropriate perspective. However, because
the treatment of epistemic states with DTS is not well established, we leave this
analysis to future work.

Another possible direction of future research is to investigate how to relate
our analysis of CIs to presupposition accommodation, returning to the spirit
of [6]. Although we pointed out in Section 6 that the recent definition of ac-
commodation in DTS is not compatible with CIs, we might be able to revise it
so that CIs and accommodated presuppositions are handled in a more unified
manner. We need to further consider the discourse behavior of the two types of
content to tackle this challenge.

Acknowledgements

We would like to thank the anonymous reviewers of LENLS20 for their comments
and suggestions, which helped us improve this paper. This work was supported
by JST, PRESTO grant number JPMJPR21C8, Japan, and JSPS KAKENHI
Grant Number JP23H03452, Japan.

References

1. Amaral, P., Roberts, C., Smith, E.A.: Review of the logic of conventional im-
plicatures by chris potts. Linguistics and Philosophy 30(6), 707–749 (2007).
https://doi.org/10.1007/s10988-008-9025-2

2. AnderBois, S., Brasoveanu, A., Henderson, R.: Crossing the appositive/at-
issue meaning boundary. Semantics and Linguistic Theory 20, 328–346 (2010).
https://doi.org/10.3765/salt.v20i0.2551

3. Anderbois, S., Brasoveanu, A., Henderson, R.: At-issue Proposals and Ap-
positive Impositions in Discourse. Journal of Semantics 32(1), 93–138 (2013).
https://doi.org/10.1093/jos/fft014

4. Arnold, D.: Non-restrictive relatives are not orphans. Journal of Linguistics 43(2),
271–309 (2007). https://doi.org/10.1017/S0022226707004586

5. Bekki, D.: A proof-theoretic analysis of weak crossover. In: Yada, K., Takama, Y.,
Mineshima, K., Satoh, K. (eds.) New Frontiers in Artificial Intelligence: JSAI-isAI
2021 Workshops, JURISIN, LENLS18, SCIDOCA, Kansei-AI, AI-BIZ, Yokohama,
Japan, November 13–15, 2021, Revised Selected Papers. pp. 228–241. Springer
Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-36190-6 16

6. Bekki, D., McCready, E.: CI via DTS. In: Murata, T., Mineshima, K.,
Bekki, D. (eds.) New Frontiers in Artificial Intelligence: JSAI-isAI 2014 Work-
shops, LENLS, JURISIN, and GABA, Kanagawa, Japan, October 27–28,
2014, Revised Selected Papers. pp. 23–36. Springer, Berlin, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48119-6 3

7. Bekki, D., Mineshima, K.: Context-passing and underspecification in dependent
type semantics. In: Chatzikyriakidis, S., Luo, Z. (eds.) Modern Perspectives in
Type-Theoretical Semantics, pp. 11–41. Springer International Publishing, Cham
(2017). https://doi.org/10.1007/978-3-319-50422-3 2

https://doi.org/10.1007/s10988-008-9025-2
https://doi.org/10.3765/salt.v20i0.2551
https://doi.org/10.1093/jos/fft014
https://doi.org/10.1017/S0022226707004586
https://doi.org/10.1007/978-3-031-36190-6_16
https://doi.org/10.1007/978-3-662-48119-6_3
https://doi.org/10.1007/978-3-319-50422-3_2

20 D. Matsuoka et al.

8. del Gobbo, F.: Appositives at the interface. Ph.D. thesis, University of California
(2003)

9. del Gobbo, F.: On the syntax and semantics of appositive relative clauses. Paren-
theticals 106, 173–201 (2007). https://doi.org/10.1075/la.106.10del

10. Geurts, B.: Specific indefinites, presupposition and scope. In: Bauerle, R.,
Reyle, U., Zimmermann, T. (eds.) Presuppositions and Discourse: Essays Of-
fered to Hans Kamp, pp. 125–158. Brill, Leiden, The Netherlands (2010).
https://doi.org/10.1163/9789004253162 006

11. Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.L. (eds.) Speech
Acts, Syntax and Semantics, vol. 3, pp. 41–58. Academic Press (1975).
https://doi.org/https://doi.org/10.1163/9789004368811 003

12. Groenendijk, J., Stokhof, M.: Dynamic predicate logic. Linguistics and Philosophy
14(1), 39–100 (1991). https://doi.org/10.1007/BF00628304

13. Harris, J.A., Potts, C.: Perspective-shifting with appositives and expressives. Lin-
guistics and Philosophy 32(6), 523–552 (2009). https://doi.org/10.1007/s10988-
010-9070-5

14. Jasbi, M.: The suffix that makes persian nouns unique. In: Advances in Iranian lin-
guistics. p. 107–118. John Benjamins (2020). https://doi.org/10.1075/cilt.351.06jas

15. Koev, T.: Two puzzles about appositives: Projection and perspective shift. In:
Etxeberria, U., Fălăuş, A., Irurtzun, A., Leferman, B. (eds.) Proceedings of Sinn
und Bedeutung. vol. 18, pp. 217–234 (2014)

16. Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science, In-
ternational Series of Monographs on Computer Science, vol. 49. Oxford University
Press (1994)

17. Martin-Löf, P.: Intuitionistic type theory. Bibliopolis, Naples (1984), notes by Gio-
vanni Sambin of a series of lectures given in Padua, June 1980

18. Murray, S.E.: Varieties of update. Semantics and Pragmatics 7(2), 1–53 (2014).
https://doi.org/10.3765/sp.7.2

19. Nouwen, R.: On appositives and dynamic binding. Research on language and com-
putation 5(1), 87–102 (2007). https://doi.org/10.1007/s11168-006-9019-6

20. Nouwen, R.: A note on the projection of appositives. In: McCready, E., Yabushita,
K., Yoshimoto, K. (eds.) Formal Approaches to Semantics and Pragmatics:
Japanese and Beyond, pp. 205–222. Springer Netherlands, Dordrecht (2014).
https://doi.org/10.1007/978-94-017-8813-7 10

21. Poschmann, C.: Embedding non-restrictive relative clauses. Proceedings of Sinn
und Bedeutung 22(2), 235–252 (2018)

22. Potts, C.: The Logic of Conventional Implicatures. Oxford University Press (2004).
https://doi.org/10.1093/acprof:oso/9780199273829.001.0001

23. van der Sandt, R.: Presupposition Projection as Anaphora Resolution. Journal of
Semantics 9(4), 333–377 (1992). https://doi.org/10.1093/jos/9.4.333

24. Schlenker, P.: Supplements without Bidimensionalism. Linguistic Inquiry 54(2),
251–297 (2023). https://doi.org/10.1162/ling a 00442

25. Steedman, M.: The Syntactic Process. MIT press (2000)
26. Syrett, K., Koev, T.: Experimental Evidence for the Truth Conditional Contribu-

tion and Shifting Information Status of Appositives. Journal of Semantics 32(3),
525–577 (2014). https://doi.org/10.1093/jos/ffu007

27. Tanaka, R., Mineshima, K., Bekki, D.: Resolving Modal Anaphora in Depen-
dent Type Semantics. In: Murata, T., Mineshima, K., Bekki, D. (eds.) New
Frontiers in Artificial Intelligence: JSAI-isAI 2014 Workshops, LENLS, JURISIN,
and GABA, Kanagawa, Japan, October 27–28, 2014, Revised Selected Papers. p.

https://doi.org/10.1075/la.106.10del
https://doi.org/10.1163/9789004253162_006
https://doi.org/https://doi.org/10.1163/9789004368811_003
https://doi.org/10.1007/BF00628304
https://doi.org/10.1007/s10988-010-9070-5
https://doi.org/10.1007/s10988-010-9070-5
https://doi.org/10.1075/cilt.351.06jas
https://doi.org/10.3765/sp.7.2
https://doi.org/10.1007/s11168-006-9019-6
https://doi.org/10.1007/978-94-017-8813-7_10
https://doi.org/10.1093/acprof:oso/9780199273829.001.0001
https://doi.org/10.1093/jos/9.4.333
https://doi.org/10.1162/ling_a_00442
https://doi.org/10.1093/jos/ffu007

Appositive Projection as Implicit Context Extension in DTS 21

83–98. Springer-Verlag, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48119-6 7

28. Tonhauser, J., Beaver, D., Roberts, C., Simons, M.: Toward a
taxonomy of projective content. Language 89(1), 66–109 (2013).
https://doi.org/10.1353/lan.2013.0001

29. Wang, L., Reese, B., McCready, E.: The projection problem of nominal appositives.
Snippets 10(1), 13–14 (2005)

https://doi.org/10.1007/978-3-662-48119-6_7
https://doi.org/10.1007/978-3-662-48119-6_7
https://doi.org/10.1353/lan.2013.0001

	Appositive Projection as Implicit Context Extension in Dependent Type Semantics

