
Appositive Projection as Implicit Context Extension in Dependent Type Semantics

Daiki Matsuoka1 Daisuke Bekki2 Hitomi Yanaka1

1The University of Tokyo 2Ochanomizu University

1 Introduction

The content of an appositive relative clause (ARC) is a type of conventional implicature (CI), that
is, secondary or supplementary (not-at-issue) information of an utterance [9], and it interacts with
at-issue content in various interesting ways. Focusing on the projection behavior and the interaction
with quantifiers, we present an analysis of ARCs based on Dependent Type Semantics (DTS) [4].
Our central idea is that appositive content implicitly extends the typing context during the process
of type checking.

2 Data

2.1. Projection The content of an ARC projects out of entailment-canceling environments such
as negation (1a) and conditional antecedent (1b).

(1) a. It is not the case that Ann, who danced, met John. ⇒ Ann danced.

b. If Ann, who danced, met John, Mary was happy. ⇒ Ann danced.

Although it might thus seem that an ARC is semantically independent of its matrix clause, it has
been suggested (e.g., [1]) that the two clauses should not be kept apart at the level of meaning
representation because anaphoric dependencies can be established between them, as in (2):

(2) a. ARC → at-issue: John, who met a girl1, smiled. She1 danced.

b. At-issue → ARC: A girl1 danced. John, who met her1, smiled.

2.2. Interaction with Quantifiers An ARC cannot modify a quantified NP unless the quantifier
has the referential reading (see, e.g., [5]).

(3) {#Every/#No/A} girl, who met John, danced.

In parallel, pronouns inside ARCs cannot be bound by non-referential quantified NPs.

(4) {#Every/#No/A} girl1 met John, who praised her1.

We remark that a girl in the previous two examples is interpreted as a so-called specific indefinite,
which basically has only the widest-scope reading. For instance, a professor in (5) takes wider scope
than the conditional [8, 10].

(5) If a professor, who is famous, publishes a book, he will make a lot of money.

3 Framework

3.1. Overview DTS is a semantic framework based on dependent type theory, where a type
represents the meaning of a sentence [4]. It accounts for anaphora and presupposition by reducing
the felicity of a sentence to the well-formedness of its semantic representation (SR). The version of
DTS that we use here [2] introduces an underspecified type (or an @-type) to represent anaphoric
meaning in a compositional way.1 The type is characterized by the following inference rule:

Γ ⊢ A : type Γ ⊢ M : A Γ ⊢ B[x := M] : type
(@)

Γ ⊢ (x@A)×B : type

(

@-elimination
−−−−−−−−−−→ Γ ⊢ B[x := M] : type

)

Intuitively, x is a placeholder for a concrete term M of type A. The term is searched for when we
type check the @-type, after which we replace x with M and obtain an @-free type B[x := M].

1Due to space limitations, we omit the process of semantic composition throughout this abstract.

For illustration, consider how the pronoun she is resolved in (6a). (6b) shows the felicity condition

(FC) of the second sentence.2 Note that the SR for the first sentence is in the typing context, meaning
it has already entered the common ground.

(6) a. A girl came. She danced.

b. s :

[

u : girl∗

come(π1u)

]

⊢

[

v @ female∗

dance(π1v)

]

: type

To derive (6b), we need to find a term of female∗, which is required by the second premise of the
rule (@). By introducing the world knowledge that every girl is female and accordingly assuming a
constant g-to-f : (u : girl∗) → female(π1u), we can construct the term 〈π1π1s, g-to-f(π1s)〉 of type
female∗. Substituting this term for v, we obtain dance(π1π1s). This result correctly predicts that
she can be bound by a girl, because π1π1s refers to the entity introduced by the first sentence.

3.2. @-elimination What is yet to be specified is how we can replace the variable of a @-type
in tandem with the process of type checking. In a recent version of DTS [2], the type checking
function [[−]] returns a set of derivation trees for a typing judgment, the clause for the @-type being
as follows (see [2] for the clauses for other type constructors)3. Note that the value of [[−]] is not a
single derivation because there can be multiple ways to construct a term of type A.

[[Γ ⊢ (x@A)×B : type]] =

D3

∣

∣

∣

∣

∣

∣

∣

D1 ∈ [[Γ ⊢ A : type]] (Let D1’s root be Γ ⊢ A′ : type)

D2 ∈ [[Γ ⊢ M : A′]] for some term M .

D3 ∈ [[Γ ⊢ nf(B[x := M]) : type]] (Let D2’s root be Γ ⊢ B′ : type)

The derivations of the three premises of the rule (@) are internally constructed, but D1 and D2 are
discarded; only D3 is returned. That is, what we obtain as a result of type checking (x @ A) × B
is an @-free type B′, as if it were the type we wanted to check from the beginning. We can thus
simultaneously perform type checking and eliminate @-types.

3.3. Two-stage Validation Before presenting our proposal, we must clarify how discourses are
processed in DTS, which is crucial in distinguishing between at-issue and not-at-issue content. Impor-
tantly, type checking confirms only the FC of a sentence; it does not consider whether it is accepted
by the addressee. In other words, whether the SR is added to the typing context is determined after
it is type checked, based on some pragmatic factors.4 In this paper, we assume two validation stages
before an SR A is added to the context Γ.

(i) By calculating [[Γ ⊢ A : type]], we check the well-formedness of A under Γ and eliminate the
@-types in A (suppose we obtain Γ ⊢ A′ : type as a result).

(ii) We check whether A′ is acceptable under Γ. If it is true, we extend Γ with x : A′ (x /∈ FV(Γ)).

4 Proposal

4.1. CI Type We propose extending DTS with a new type (x⊳A)×B (a CI type), characterized
by the following inference rule:

Γ ⊢ A : type Γ, x : A ⊢ B : type
(⊳)

Γ ⊢ (x⊳A)×B : type

(

⊳-elimination
−−−−−−−−−−→ Γ, x : A ⊢ B : type

)

As well as the @-type, elimination of the ⊳-type is defined in a clause for [[−]].

[[Γ ⊢ (x⊳A)×B : type]] =

{

D2

∣

∣

∣

∣

∣

D1 ∈ [[Γ ⊢ A : type]] (Let D1’s root be Γ,∆ ⊢ A′ : type)

D2 ∈ [[Γ,∆, x : A′ ⊢ B : type]]

}

2We interchangeably use two notations for Σ-like operators such as (x : A) × B and
[

x : A

B

]

. We also abbreviate

(x : e)× Px as P ∗, where e is the type of entities and P is of type e → type.
3nf(M) is the normal form of M (if any).
4Although it is beyond the scope of the present paper to characterize such factors, we at least require that the

acceptance of the assertion should not contradict the preceding discourse (i.e., Γ, x : A 0 ⊥).

Unlike the @-type, this type does not require a term of A for its well-formedness. Instead, it extends
the context Γ with x : A when it is eliminated after the two premises are derived. In other words,
well-formedness of the ⊳-type requires the context to behave as if x : A had already been introduced
before B’s well-formedness is checked.
Conceptually, the context extension launched by (x⊳A)×B is implicit in that it leaves no room

for the addressee to choose whether to accept or reject A. In fact, x : A is added to the context while
the felicity of the whole SR is being checked; A is not subject to the second validation stage. This
behavior reflects the idea by [1] that appositive content is an imposition on the common ground,
which is normally hard to respond to or negotiate on.

4.2. Permutation With the ⊳-type, computing [[Γ ⊢ A : type]] may change the original context
(Γ) as well as the type (A). Hence, the above-mentioned two-stage validation needs to be revised as
indicated by underlines below. Note that ∆ is empty if A contains no ⊳-types.

(i) By calculating [[Γ ⊢ A : type]], we check the well-formedness of A under Γ and eliminate the
@-types and ⊳-types in A (suppose we obtain Γ,∆ ⊢ A′ : type as a result).

(ii) We check whether A′ is acceptable under Γ,∆. If it is true, we extend Γ,∆ with x : A′

(x /∈ FV(Γ,∆)).

However, this revision clashes with other parts of the theory. Suppose that while type checking
(x : A) → B, we verified Γ, x : A ⊢ B : type, resulting in an extended context Γ, x : A, y : C due to
a ⊳-type inside B. We cannot apply the rule (ΠF) in such cases because x : A is not on the right
end of the context. With this motivation, we introduce the following structural rule (permutation),
which is admissible in the dependent type theory on which DTS is based.

Γ, x : A, y : B,∆ ⊢ M : C
(perm) (x /∈ FV(B))

Γ, y : B, x : A,∆ ⊢ M : C

The side condition x /∈ FV(B) is required by the property of dependent type theory that a type can
depend on terms: if x : A occurs free in B, exchanging the two premises would result in an ill-formed
context. We will see that this (independently motivated) restriction is important in explaining the
interaction between an ARC and a quantified NP.
Using permutation, we can formally define the type checking algorithm for the Π-type as follows

(the same applies to the Σ-type). Here, Arrange is a partial function that applies the rule (perm) to
D and returns the derivation (if any) such that its root has the variable x at the right end of the
context. If there is no such derivation, type checking fails because the result of [[−]] is empty.

[[Γ ⊢ (x : A) → B : type]] =

D1

Γ,∆ ⊢ A′ : type
(wk)

..

.
(wk)

Γ,∆,Θ ⊢ A′ : type

D3

Γ,∆,Θ, x : A′ ⊢ B′ : type
(ΠF)

Γ,∆,Θ ⊢ (x : A′) → B′ : type

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

D1 ∈ [[Γ ⊢ A : type]]

(Let D1’s root be Γ,∆ ⊢ A′ : type)

D2 ∈ [[Γ,∆, x : A′ ⊢ B : type]]

(Let D2’s root be Γ,∆, x : A′,Θ ⊢ B′ : type)

D3 = Arrange(D2, x)

5 Verification

5.1. Projection We demonstrate that the ⊳-type correctly predicts the behavior of ARCs. First,
we verify their projectivity. (7) shows the FC of (1a).5

(7) ⊢

(

v :

[

u⊳ dance(a)
meet(a, j)

])

→ ⊥ : type

Figure 1 shows the process by which the FC is validated. Deriving the sub-goal (g1) results in an
extended context u : dance(a), and this change is propagated to the other sub-goal (g2). After (g2)
is derived, we apply the rule (ΠF) and obtain u : dance(a) ⊢ (v : meet(a, j)) → ⊥ : type. The
appositive content dance(a) has thus successfully projected out of the negation.6

5In DTS, negation ¬A is defined as (x : A) → ⊥, where ⊥ is the empty type [4].
6This claim is justified by the fact that dance(a) is inhabited under the updated context u : dance(a), s : (v :

meet(a, j)) → ⊥. To be precise, we need a revised definition of an inference, which we will describe in the full paper.

The sub-goals to derive (7)

(g1) ⊢

[

u⊳ d(a)
m(a, j)

]

: type

(g2) v :

[

u⊳ d(a)
m(a, j)

]

⊢ ⊥ : type

Derive (g1)
======================⇒
D1[u : d(a) ⊢ m(a, j) : type]

(g2) u : d(a), v : m(a, j) ⊢ ⊥ : type

Derive (g2)
==============⇒
D2[· · · ⊢ ⊥ : type]

(done)

return
D1

u : d(a) ⊢ m(a, j) : type

D2

u : d(a), v : m(a, j) ⊢ ⊥ : type
(ΠF)

u : d(a) ⊢ (v : m(a, j)) → ⊥ : type

The sub-goals to derive (g1)

(g3) ⊢ d(a) : type
(g4) u : d(a) ⊢ m(a, j) : type

Derive (g3)
=============⇒
D3[⊢ d(a) : type]

(g4) u : d(a) ⊢ m(a, j) : type
Derive (g4)

=====================⇒
D4[u : d(a) ⊢ m(a, j) : type]

(done) (return D4)

Figure 1: The process of validating the FC of (1a). We abbreviate the names of the predicates (e.g.,
dance 7→ d). We also write D[J] for a derivation D with root J . The underlined parts indicate the
context extension, and the gray boxes show the types transformed during type checking.

5.2. Anaphoric Dependencies Next, we check how anaphora crossing the boundary between at-
issue and ARC content can be resolved. (8a) is the FC of the first sentence of (2a), whose validation
extends the context with v : [· · ·]. Assuming the at-issue content smile(j) is accepted, the FC of
the second sentence is (8b).7 The @-type can be resolved with v in a way similar to (6b).

(8) a. ⊢

v ⊳

[

u : girl∗

meet(j, π1u)

]

smile(j)

 : type
type checking

−−−−−−−−−−→ v :

[

u : girl∗

meet(j, π1u)

]

⊢ smile(j) : type

b. v : [· · ·], s : smile(j) ⊢

[

w @ female∗

dance(π1u)

]

: type
type checking

−−−−−−−−−−→ v : [· · ·], s : · · · ⊢ dance(π1π1v) : type

The other direction, shown in (2b), is more complicated. Provided that the first sentence is
successfully type checked and accepted, the FC of the second sentence is as follows.

(9) v :

[

u : girl∗

dance(π1u)

]

⊢

z ⊳

[

w @ female∗

meet(j, π1w)

]

smile(j)

 : type

Figure 2 shows the derivation process. In deriving the first sub-goal, we can resolve the @-type as in
(8b),8 and the result is reflected in the other sub-goal. Finally, we obtain a context extended with
z : meet(j, π1π1v) (John met her), as expected.

The sub-goals to derive (9)

(g1) v : [· · ·] ⊢

[

w @ f∗

m(j, π1w)

]

: type

(g2) v : [· · ·], z :

[

w @ f∗

m(j, π1w)

]

⊢ s(j) : type

Derive (g1)
==========================⇒
D1[v : [· · ·] ⊢ m(j, π1π1v) : type]

(g2) v : [· · ·], z : m(j, π1π1v) ⊢ s(j) : type

Derive (g2)
===============================⇒
D2[v : [· · ·], z : m(j, π1π1v) ⊢ s(j) : type]

(done) (return D2)

Figure 2: The process of validating the FC of (2b).

5.3. ARC + Non-referential Quantifier Let us turn to the interaction with quantifiers. Taking
every as an example,9 we show the FC of (3) in (10).

(10) ⊢ (u : girl∗) →

[

v ⊳ meet(π1u, j)
dance(π1u)

]

: type

7Note that the context in (8b) is the same as when the first sentence is replaced with “John met a girl. He smiled.”
The difference lies in how v : [· · ·] (John met a girl) is added to the context.

8If we could not resolve the @-type here, the whole SR would not be well-typed. Hence, our theory predicts that
the infelicity of the appositive content leads to the infelicity of the whole sentence.

9The prediction is the same for “No girl ...,” which is translated using a Π-type ((u : girl∗) → ¬(· · ·)).

The sub-goals to derive (10)

(g1) ⊢ g∗ : type

(g2) u : g∗ ⊢

[

v ⊳ m(π1u, j)
d(π1u)

]

: type
(· · ·)

Derive (g2)
===============================⇒
D2[u : g∗, v : m(π1u, j) ⊢ d(π1u) : type]

D2

u : g∗, v : m(π1u, j) ⊢ d(π1u) : type
(perm)

×

Figure 3: The process showing the infelicity of (3). The step for (g1) is omitted for brevity.

Figure 3 describes how its infelicity is predicted. When the sub-goal (g2) is derived, the context is
extended with v : meet(π1u, j), in which u occurs free. This prevents the application of the rule
(perm), so u : girl∗ cannot be moved to the right end of the context, causing type checking to fail.
We can handle the case of binding in a similar way. Again using every girl as our example, we

describe the FC of (4) in (11). We first need to resolve the @-type corresponding to her under the
context u : girl∗. We can replace w using u and obtain (w ⊳ praise(j, π1u))× · · · . Since u occurs
free in the appositive content praise(j, π1u), type checking fails as in (10).

(11) ⊢ (u : girl∗) →

v @ female∗
[

w ⊳ praise(j, π1v)
meet(π1v, j)

]

 : type

In summary, the appositive content x⊳A cannot project out if it depends on a variable introduced
by Π or Σ. Importantly, this restriction derives from the side condition of the permutation rule,
which is inherent in dependent type theory.

5.4. ARC + Specific Indefinite Finally, we check the case of specific indefinites. We assume
that the determiner a with the specific reading is translated with a ⊳-type.10 Then, the type checking
of the SR for “A girl, who met John, danced” proceeds as described in (12). Since u : girl∗, on
which the appositive content meet(π1u, j) depends, is also implicitly added to the context, we need
not apply (perm) and thus we can complete type checking.

(12) ⊢

u⊳ girl∗
[

v ⊳ meet(π1u, j)
dance(π1u)

]

 : type
type checking

−−−−−−−−−−→ u : girl∗, v : meet(π1u, j) ⊢ dance(π1u) : type

The same line of reasoning shows that a specific indefinite with an ARC projects out of a conditional
antecedent, which accounts for the wide-scope reading of (5).

6 Discussion and Conclusion

We proposed an extension of DTS with a new type that implicitly extends the context during type
checking. This mechanism not only predicts the projection behavior of ARCs but also captures their
interaction with quantifiers, based on the restriction on the permutation rule.
Closely related to this work is [3], which also analyzed CIs with DTS. Informally, the proposal

treated a CI as a presupposition that is obligatorily accommodated and does not contribute to the at-
issue content. We can point out that the system does not straightforwardly account for the infelicity
of an ARC under the scope of non-referential quantifiers, because in such cases it would accommodate
the appositive content (as a presupposition) and incorrectly predict that the sentence is felicitous.
However, since that study used a different version of DTS, we need an in-depth comparison, which
we leave for future work.
We also have not discussed cases where appositives do not project. For instance, appositive content

inside an attitude operator is sometimes attributed to the attitude holder rather than the speaker [6],
and nominal appositives can take narrow scope with respect to intensional operators [10]. We need
to further consider the treatment of extended contexts to account for such challenging phenomena.

10Viewing the specificity of an indefinite as a conventional implicature is uncommon but not unnatural because it
projects out of entailment-canceling environments (not at-issue) and is generally new to the addressee (not presup-
positional). [7] presented a similar argument, analyzing a Persian specificity marker with the system proposed by [9]
(note that in his analysis, the CI content is the uniqueness of the nominal to be modified).

Acknowledgements

We thank the two anonymous reviewers for their helpful comments and suggestions, which improved
this paper. This work was supported by JST, PRESTO grant number JPMJPR21C8, Japan.

References

[1] S. AnderBois, A. Brasoveanu, and R. Henderson. At-issue proposals and appositive impositions
in discourse. Journal of Semantics, 32(1):93–138, 2015.

[2] D. Bekki. A proof-theoretic analysis of weak crossover. In K. Yada, Y. Takama, K. Mineshima,
and K. Satoh, editors, New Frontiers in Artificial Intelligence, pages 228–241, Cham. Springer
Nature Switzerland, 2023.

[3] D. Bekki and E. McCready. Ci via dts. In New Frontiers in Artificial Intelligence: JSAI-isAI

2014 Workshops, LENLS, JURISIN, and GABA, Kanagawa, Japan, October 27–28, 2014,

Revised Selected Papers. 2015, pages 23–36.

[4] D. Bekki and K. Mineshima. Context-Passing and Underspecification in Dependent Type Se-

mantics. In Modern Perspectives in Type-Theoretical Semantics. S. Chatzikyriakidis and Z.
Luo, editors. Springer, 2017, pages 11–41.

[5] F. del Gobbo. Appositives at the interface. PhD thesis, University of California, 2003.

[6] J. A. Harris and C. Potts. Perspective-shifting with appositives and expressives. Linguistics
and Philosophy, 32:523–552, 2009.

[7] M. Jasbi. The suffix that makes persian nouns unique. In Advances in Iranian linguistics,
pages 107–118. John Benjamins, 2020.

[8] R. Nouwen. A note on the projection of appositives. Formal approaches to semantics and

pragmatics: Japanese and beyond :205–222, 2014.

[9] C. Potts. The Logic of Conventional Implicatures. Oxford University Press, 2005.

[10] L. Wang, B. Reese, and E. McCready. The projection problem of nominal appositives. Snippets,
10(1):13–14, 2005.

	Introduction
	Data
	Framework
	Proposal
	Verification
	Discussion and Conclusion

